Response inhibition as an executive function refers to the ability to suppress inappropriate but prepotent responses. Several brain regions have been implicated in the process underlying inhibitory control, including the cerebellum. The aim of the present study was to explore the role of the cerebellum in executive functioning, particularly in response inhibition. For this purpose, we transitorily inhibited cerebellar activity by means of cathodal tDCS and studied the effects of this inhibition on ERP components elicited during a Go/NoGo task in healthy subjects. Sixteen healthy subjects underwent a Go/NoGo task prior to and after cathodal and sham cerebellar tDCS in separate sessions. A reduction in N2-NoGo amplitude and a prolongation in N2-NoGo latency emerged after cathodal tDCS whereas no differences were detected after sham stimulation. Moreover, commission errors in NoGo trials were significantly higher after cathodal tDCS than at the basal evaluation. No differences emerged between performances in Go trials and those after sham stimulation. These data indicate that cerebellar inhibition following cathodal stimulation alters the ability to allocate attentional resources to stimuli containing conflict information and the inhibitory control. The cerebellum may regulate the attentional mechanisms of stimulus orientation and inhibitory control both directly, by making predictions of errors or behaviors related to errors, and indirectly, by controlling the functioning of the cerebral cortical areas involved in the perception of conflict signals and of the basal ganglia involved in the inhibitory control of movement.

Effects of Cerebellar tDCS on Inhibitory Control: Evidence from a Go/NoGo Task / Mannarelli, D.; Pauletti, C.; Petritis, A.; Delle Chiaie, R.; Curra, A.; Trompetto, C.; Fattapposta, F.. - In: THE CEREBELLUM. - ISSN 1473-4222. - 19:6(2020), pp. 788-798. [10.1007/s12311-020-01165-z]

Effects of Cerebellar tDCS on Inhibitory Control: Evidence from a Go/NoGo Task

Mannarelli D.
;
Pauletti C.;Petritis A.;Delle Chiaie R.;Curra A.;Fattapposta F.
2020

Abstract

Response inhibition as an executive function refers to the ability to suppress inappropriate but prepotent responses. Several brain regions have been implicated in the process underlying inhibitory control, including the cerebellum. The aim of the present study was to explore the role of the cerebellum in executive functioning, particularly in response inhibition. For this purpose, we transitorily inhibited cerebellar activity by means of cathodal tDCS and studied the effects of this inhibition on ERP components elicited during a Go/NoGo task in healthy subjects. Sixteen healthy subjects underwent a Go/NoGo task prior to and after cathodal and sham cerebellar tDCS in separate sessions. A reduction in N2-NoGo amplitude and a prolongation in N2-NoGo latency emerged after cathodal tDCS whereas no differences were detected after sham stimulation. Moreover, commission errors in NoGo trials were significantly higher after cathodal tDCS than at the basal evaluation. No differences emerged between performances in Go trials and those after sham stimulation. These data indicate that cerebellar inhibition following cathodal stimulation alters the ability to allocate attentional resources to stimuli containing conflict information and the inhibitory control. The cerebellum may regulate the attentional mechanisms of stimulus orientation and inhibitory control both directly, by making predictions of errors or behaviors related to errors, and indirectly, by controlling the functioning of the cerebral cortical areas involved in the perception of conflict signals and of the basal ganglia involved in the inhibitory control of movement.
2020
Cerebellum; Cognition; Go/NoGo; Healthy subjects; tDCS
01 Pubblicazione su rivista::01a Articolo in rivista
Effects of Cerebellar tDCS on Inhibitory Control: Evidence from a Go/NoGo Task / Mannarelli, D.; Pauletti, C.; Petritis, A.; Delle Chiaie, R.; Curra, A.; Trompetto, C.; Fattapposta, F.. - In: THE CEREBELLUM. - ISSN 1473-4222. - 19:6(2020), pp. 788-798. [10.1007/s12311-020-01165-z]
File allegati a questo prodotto
File Dimensione Formato  
Mannarelli_Effects of Cerebellar tDCS_2020.pdf

accesso aperto

Note: Mannarelli_Effects of Cerebellar tDCS_2020
Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 601.59 kB
Formato Adobe PDF
601.59 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1473758
Citazioni
  • ???jsp.display-item.citation.pmc??? 9
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 19
social impact