In this paper, we address the problem of identifying the effective theory that describes the statistics of the fluctuations of what is thought to be the relevant order parameter for glassy systems - the overlap field with an equilibrium reference configuration - close to the putative thermodynamic glass transition. Our starting point is the mean-field theory of glass formation, which relies on the existence of a complex free-energy landscape with a multitude of metastable states. In this paper, we focus on archetypal mean-field models possessing this type of free-energy landscape and set up the framework to determine the exact effective theory. We show that the effective theory at the mean-field level is generically of the random-field + random-bond Ising type. We also discuss the main issues concerning the extension of our result to finite-dimensional systems. This extension is addressed in detail in the companion paper.

Random-field Ising-like effective theory of the glass transition. I Mean-field models / Biroli, G.; Cammarota, C.; Tarjus, G.; Tarzia, M.. - In: PHYSICAL REVIEW. B. - ISSN 2469-9950. - 98:17(2018). [10.1103/PhysRevB.98.174205]

Random-field Ising-like effective theory of the glass transition. I Mean-field models

Cammarota C.;
2018

Abstract

In this paper, we address the problem of identifying the effective theory that describes the statistics of the fluctuations of what is thought to be the relevant order parameter for glassy systems - the overlap field with an equilibrium reference configuration - close to the putative thermodynamic glass transition. Our starting point is the mean-field theory of glass formation, which relies on the existence of a complex free-energy landscape with a multitude of metastable states. In this paper, we focus on archetypal mean-field models possessing this type of free-energy landscape and set up the framework to determine the exact effective theory. We show that the effective theory at the mean-field level is generically of the random-field + random-bond Ising type. We also discuss the main issues concerning the extension of our result to finite-dimensional systems. This extension is addressed in detail in the companion paper.
2018
Glass transition; random field ising model; effective interactions
01 Pubblicazione su rivista::01a Articolo in rivista
Random-field Ising-like effective theory of the glass transition. I Mean-field models / Biroli, G.; Cammarota, C.; Tarjus, G.; Tarzia, M.. - In: PHYSICAL REVIEW. B. - ISSN 2469-9950. - 98:17(2018). [10.1103/PhysRevB.98.174205]
File allegati a questo prodotto
File Dimensione Formato  
Cammarota_Glass-transition.pdf

accesso aperto

Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Creative commons
Dimensione 1.33 MB
Formato Adobe PDF
1.33 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1472290
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 15
social impact