Let X be a metric space with a doubling measure satisfying μ(B)≳rBn for any ball B with any radius rB> 0. Let L be a non negative selfadjoint operator on L2(X). We assume that e-tL satisfies a Gaussian upper bound and that the flow eitL satisfies a typical L1- L∞ dispersive estimate of the form ‖eitL‖L1→L∞≲|t|-n/2. Then we prove a similar L1- L∞ dispersive estimate for a general class of flows eitϕ(L), with φ(r) of power type near 0 and near ∞. In the case of fractional powers φ(L) = Lν, ν∈ (0 , 1) , we deduce dispersive estimates for eitLν with data in Sobolev, Besov or Hardy spaces HLp with p∈ (0 , 1] , associated to the operator L.

On the flows associated to selfadjoint operators on metric measure spaces / THE ANH BUI, ; Piero, D’Ancona; XUAN THINH DUONG, ; AND DETLEF MU ̈LLER,. - In: MATHEMATISCHE ANNALEN. - ISSN 1432-1807. - 375:(2019), pp. 1393-1426. [10.1007/s00208-019-01857-w]

On the flows associated to selfadjoint operators on metric measure spaces

PIERO D’ANCONA
;
2019

Abstract

Let X be a metric space with a doubling measure satisfying μ(B)≳rBn for any ball B with any radius rB> 0. Let L be a non negative selfadjoint operator on L2(X). We assume that e-tL satisfies a Gaussian upper bound and that the flow eitL satisfies a typical L1- L∞ dispersive estimate of the form ‖eitL‖L1→L∞≲|t|-n/2. Then we prove a similar L1- L∞ dispersive estimate for a general class of flows eitϕ(L), with φ(r) of power type near 0 and near ∞. In the case of fractional powers φ(L) = Lν, ν∈ (0 , 1) , we deduce dispersive estimates for eitLν with data in Sobolev, Besov or Hardy spaces HLp with p∈ (0 , 1] , associated to the operator L.
2019
Schr ̈odinger semigroup; dispersive estimate
01 Pubblicazione su rivista::01a Articolo in rivista
On the flows associated to selfadjoint operators on metric measure spaces / THE ANH BUI, ; Piero, D’Ancona; XUAN THINH DUONG, ; AND DETLEF MU ̈LLER,. - In: MATHEMATISCHE ANNALEN. - ISSN 1432-1807. - 375:(2019), pp. 1393-1426. [10.1007/s00208-019-01857-w]
File allegati a questo prodotto
File Dimensione Formato  
Bui_On-the-flows-associated_2019.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 652.26 kB
Formato Adobe PDF
652.26 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1471655
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 11
social impact