In the frame of the EUROfusion roadmap, the development of a conceptual design for the Demonstration Fusion Power Reactor (DEMO), beyond ITER, is a key issue. The DEMO reactor shall guarantee the tritium self-sufficiency, generate electricity and operate as a test facility for the fusion power plant relevant technologies, such as the breeding blanket (BB). The Water Cooled Lithium Lead (WCLL) concept has been chosen as a candidate for the DEMO BB: it relies on liquid Lithium Lead as breeder and neutron multiplier, Eurofer as structural material and pressurized water as coolant. A detailed MCNP model of the latest WCLL BB layout has been generated and integrated in the DEMO MCNP generic model suitably designed for neutronic analyses. Three-dimensional neutron and gamma transport simulations have been carried out by means the MCNP Monte Carlo code and JEFF nuclear data libraries in order to assess the WCLL-DEMO performances in terms of tritium self-sufficiency and shielding effectiveness to protect the vacuum vessel and the toroidal field coils. Moreover, the impact on the Tritium production of the water content in the first wall (FW) and the effect of its pressure/temperature has been addressed. The outcomes of the present study provide guidelines for the optimization of the WCLL DEMO reactor nuclear performances through the assessment of the loads on sensitive components and the estimation of its potential tritium generation capabilities.

Nuclear analysis of the Water cooled lithium lead DEMO reactor / Moro, F.; Colangeli, A.; Del Nevo, A.; Flammini, D.; Mariano, G.; Martelli, E.; Mozzillo, R.; Noce, S.; Villari, R.. - In: FUSION ENGINEERING AND DESIGN. - ISSN 0920-3796. - 160:(2020), p. 111833. [10.1016/j.fusengdes.2020.111833]

Nuclear analysis of the Water cooled lithium lead DEMO reactor

Colangeli A.;Mariano G.;
2020

Abstract

In the frame of the EUROfusion roadmap, the development of a conceptual design for the Demonstration Fusion Power Reactor (DEMO), beyond ITER, is a key issue. The DEMO reactor shall guarantee the tritium self-sufficiency, generate electricity and operate as a test facility for the fusion power plant relevant technologies, such as the breeding blanket (BB). The Water Cooled Lithium Lead (WCLL) concept has been chosen as a candidate for the DEMO BB: it relies on liquid Lithium Lead as breeder and neutron multiplier, Eurofer as structural material and pressurized water as coolant. A detailed MCNP model of the latest WCLL BB layout has been generated and integrated in the DEMO MCNP generic model suitably designed for neutronic analyses. Three-dimensional neutron and gamma transport simulations have been carried out by means the MCNP Monte Carlo code and JEFF nuclear data libraries in order to assess the WCLL-DEMO performances in terms of tritium self-sufficiency and shielding effectiveness to protect the vacuum vessel and the toroidal field coils. Moreover, the impact on the Tritium production of the water content in the first wall (FW) and the effect of its pressure/temperature has been addressed. The outcomes of the present study provide guidelines for the optimization of the WCLL DEMO reactor nuclear performances through the assessment of the loads on sensitive components and the estimation of its potential tritium generation capabilities.
2020
Breeding blanket; DEMO; MCNP; Neutronics; Nuclear analysis; WCLL
01 Pubblicazione su rivista::01a Articolo in rivista
Nuclear analysis of the Water cooled lithium lead DEMO reactor / Moro, F.; Colangeli, A.; Del Nevo, A.; Flammini, D.; Mariano, G.; Martelli, E.; Mozzillo, R.; Noce, S.; Villari, R.. - In: FUSION ENGINEERING AND DESIGN. - ISSN 0920-3796. - 160:(2020), p. 111833. [10.1016/j.fusengdes.2020.111833]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1471031
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 16
social impact