We study the asymptotic behavior of anomalous p-fractional energies in bad domains via the M-convergence. These energies arise naturally when studying Robin-Venttsel' problems for the regional fractional p-Laplacian. We provide a suitable notion of fractional normal derivative on irregular sets via a fractional Green formula as well as existence and uniqueness results for the solution of the Robin-Venttsel' problem by a semigroup approach. Markovianity properties of the associated semigroup are proved.
M-Convergence of p-fractional energies in irregular domains / Lancia, Maria Rosaria; Creo, Simone; Vernole, Paola. - In: JOURNAL OF CONVEX ANALYSIS. - ISSN 0944-6532. - (2021).
M-Convergence of p-fractional energies in irregular domains
Maria Rosaria Lancia;Simone Creo;Paola Vernole
2021
Abstract
We study the asymptotic behavior of anomalous p-fractional energies in bad domains via the M-convergence. These energies arise naturally when studying Robin-Venttsel' problems for the regional fractional p-Laplacian. We provide a suitable notion of fractional normal derivative on irregular sets via a fractional Green formula as well as existence and uniqueness results for the solution of the Robin-Venttsel' problem by a semigroup approach. Markovianity properties of the associated semigroup are proved.File | Dimensione | Formato | |
---|---|---|---|
Creo_M-Convergence_2020.pdf
solo gestori archivio
Tipologia:
Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
492.01 kB
Formato
Adobe PDF
|
492.01 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.