We prove existence and uniqueness for solutions to equilibrium problems for free–standing, traction–free, non homogeneous crystals in the presence of plastic slips. Moreover we prove that this class of problems is closed under G-convergence of the operators. In particular the homogenization procedure, valid for elliptic systems in linear elasticity, depicts the macroscopic features of a composite material in the presence of plastic deformation.

Duality Arguments for Linear Elasticity Problems with Incompatible Deformation Fields / Garroni, Adriana; Malusa, Annalisa. - In: JOURNAL OF CONVEX ANALYSIS. - ISSN 0944-6532. - 28:2(2020).

Duality Arguments for Linear Elasticity Problems with Incompatible Deformation Fields

GARRONI, Adriana
;
MALUSA, Annalisa
2020

Abstract

We prove existence and uniqueness for solutions to equilibrium problems for free–standing, traction–free, non homogeneous crystals in the presence of plastic slips. Moreover we prove that this class of problems is closed under G-convergence of the operators. In particular the homogenization procedure, valid for elliptic systems in linear elasticity, depicts the macroscopic features of a composite material in the presence of plastic deformation.
2020
Boundary value problems for elliptic systems; elastic problems; duality solutions; homogenization
01 Pubblicazione su rivista::01a Articolo in rivista
Duality Arguments for Linear Elasticity Problems with Incompatible Deformation Fields / Garroni, Adriana; Malusa, Annalisa. - In: JOURNAL OF CONVEX ANALYSIS. - ISSN 0944-6532. - 28:2(2020).
File allegati a questo prodotto
File Dimensione Formato  
Garroni_Duality-arguments_2020.pdf

solo gestori archivio

Note: Lavoro pubblicato
Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 112.49 kB
Formato Adobe PDF
112.49 kB Adobe PDF   Contatta l'autore
Garroni_postprint_Duality-arguments_2020.pdf

accesso aperto

Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 185.7 kB
Formato Adobe PDF
185.7 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1470139
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact