We prove existence and uniqueness for solutions to equilibrium problems for free–standing, traction–free, non homogeneous crystals in the presence of plastic slips. Moreover we prove that this class of problems is closed under G-convergence of the operators. In particular the homogenization procedure, valid for elliptic systems in linear elasticity, depicts the macroscopic features of a composite material in the presence of plastic deformation.
Duality Arguments for Linear Elasticity Problems with Incompatible Deformation Fields / Garroni, Adriana; Malusa, Annalisa. - In: JOURNAL OF CONVEX ANALYSIS. - ISSN 0944-6532. - 28:2(2020).
Duality Arguments for Linear Elasticity Problems with Incompatible Deformation Fields
GARRONI, Adriana
;MALUSA, Annalisa
2020
Abstract
We prove existence and uniqueness for solutions to equilibrium problems for free–standing, traction–free, non homogeneous crystals in the presence of plastic slips. Moreover we prove that this class of problems is closed under G-convergence of the operators. In particular the homogenization procedure, valid for elliptic systems in linear elasticity, depicts the macroscopic features of a composite material in the presence of plastic deformation.File | Dimensione | Formato | |
---|---|---|---|
Garroni_Duality-arguments_2020.pdf
solo gestori archivio
Note: Lavoro pubblicato
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
112.49 kB
Formato
Adobe PDF
|
112.49 kB | Adobe PDF | Contatta l'autore |
Garroni_postprint_Duality-arguments_2020.pdf
accesso aperto
Tipologia:
Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
185.7 kB
Formato
Adobe PDF
|
185.7 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.