We define and study, under suitable assumptions, the fundamental class, the index class and the rho class of a spin Dirac operator on the regular part of a spin stratified pseudomanifold. More singular structures, such as singular foliations, are also treated. We employ groupoid techniques in a crucial way; however, an effort has been made in order to make this article accessible to readers with only a minimal knowledge of groupoids. Finally, whenever appropriate, a comparison between classical microlocal methods and groupoids methods has been provided.
Singular spaces, groupoids and metrics of positive scalar curvature / Piazza, P.; Zenobi, V. F.. - In: JOURNAL OF GEOMETRY AND PHYSICS. - ISSN 0393-0440. - 137(2019), pp. 87-123. [10.1016/j.geomphys.2018.09.016]
Titolo: | Singular spaces, groupoids and metrics of positive scalar curvature | |
Autori: | ||
Data di pubblicazione: | 2019 | |
Rivista: | ||
Citazione: | Singular spaces, groupoids and metrics of positive scalar curvature / Piazza, P.; Zenobi, V. F.. - In: JOURNAL OF GEOMETRY AND PHYSICS. - ISSN 0393-0440. - 137(2019), pp. 87-123. [10.1016/j.geomphys.2018.09.016] | |
Handle: | http://hdl.handle.net/11573/1469158 | |
Appartiene alla tipologia: | 01a Articolo in rivista |
File allegati a questo prodotto
File | Note | Tipologia | Licenza | |
---|---|---|---|---|
Piazza_Singular-spaces_2019.pdf | Versione editoriale (versione pubblicata con il layout dell'editore) | ![]() | Administrator Richiedi una copia | |
Piazza_preprint_Singular-spaces_2019.pdf | Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review) | Tutti i diritti riservati (All rights reserved) | Open Access Visualizza/Apri |