We establish existence of eta-invariants as well as of the Atiyah–Patodi–Singer and the Cheeger–Gromov rho-invariants for a class of Dirac operators on an incomplete edge space. Our analysis applies in particular to the signature and the spin Dirac operator. We derive an analogue of the Atiyah–Patodi–Singer index theorem for incomplete edge spaces and their non-compact infinite Galois coverings with edge singular boundary. Our arguments are based on the microlocal analysis of the heat kernel asymptotics associated to the Dirac laplacian of an incomplete edge metric. As an application, we discuss stability results for the two rho-invariants we have defined.
Eta and Rho invariants on manifolds with edges / Piazza, P.; Vertman, B.. - In: ANNALES DE L'INSTITUT FOURIER. - ISSN 0373-0956. - 69:5(2019), pp. 1955-20035. [10.5802/aif.3287]
Eta and Rho invariants on manifolds with edges
Piazza P.;
2019
Abstract
We establish existence of eta-invariants as well as of the Atiyah–Patodi–Singer and the Cheeger–Gromov rho-invariants for a class of Dirac operators on an incomplete edge space. Our analysis applies in particular to the signature and the spin Dirac operator. We derive an analogue of the Atiyah–Patodi–Singer index theorem for incomplete edge spaces and their non-compact infinite Galois coverings with edge singular boundary. Our arguments are based on the microlocal analysis of the heat kernel asymptotics associated to the Dirac laplacian of an incomplete edge metric. As an application, we discuss stability results for the two rho-invariants we have defined.File | Dimensione | Formato | |
---|---|---|---|
Piazza_Eta-and-Rho-invariants_2019.pdf
accesso aperto
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
3.36 MB
Formato
Adobe PDF
|
3.36 MB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.