Due to improvements in lifestyle and healthcare, the proportion of aged people is rising steadily, especially in developed countries. With aging, some physiological functions are altered and resemble those occurring in disease conditions such as hypertension, chronic coronary disease and diabetes. Thus, there is the urge to better understand molecular and cellular mechanisms underlying aging and aging-related diseases. In rodents and possibly primates, calorie restriction is an effective approach to extend lifespan by reducing free radical-induced damage. Increased production of oxygen-derived free radicals plays an important role in the process of aging. Reactive oxygen species are generated by different intracellular molecular pathways principally located in the cytoplasm and in the mitochondria. The mitochondrial protein p665(Shc) is considered a longevity assurance gene since its genetic deletion extends the lifespan of rodents and displays protective effects in several models of cardiovascular disease. Silent mating type information regulation 2 homolog 1 Saccharomyces cerevisiae (SIRT1) is a nicotinamide adenine dinucleotide (NAD+)-dependent histone deacetylase that may also be involved in aging and diseases. SIRT1 also deacetylates a number of nonhistone target proteins, including p53, endothelial nitric oxide synthase and forkhead box protein. This review focuses on the latest scientific advances in understanding aging as well as delineates the possible therapeutic implications of p66(Shc) and SIRT1 in this process. Copyright (C) 2010 S. Karger AG, Basel

Anti-Aging Medicine: Molecular Basis for Endothelial Cell-Targeted Strategies - A Mini-Review / Giovanni G., Camici; Yi, Shi; Cosentino, Francesco; Francia, Pietro; Thomas F., Luscher. - In: GERONTOLOGY. - ISSN 0304-324X. - 57:2(2011), pp. 101-108. [10.1159/000314227]

Anti-Aging Medicine: Molecular Basis for Endothelial Cell-Targeted Strategies - A Mini-Review

COSENTINO, Francesco;FRANCIA, Pietro;
2011

Abstract

Due to improvements in lifestyle and healthcare, the proportion of aged people is rising steadily, especially in developed countries. With aging, some physiological functions are altered and resemble those occurring in disease conditions such as hypertension, chronic coronary disease and diabetes. Thus, there is the urge to better understand molecular and cellular mechanisms underlying aging and aging-related diseases. In rodents and possibly primates, calorie restriction is an effective approach to extend lifespan by reducing free radical-induced damage. Increased production of oxygen-derived free radicals plays an important role in the process of aging. Reactive oxygen species are generated by different intracellular molecular pathways principally located in the cytoplasm and in the mitochondria. The mitochondrial protein p665(Shc) is considered a longevity assurance gene since its genetic deletion extends the lifespan of rodents and displays protective effects in several models of cardiovascular disease. Silent mating type information regulation 2 homolog 1 Saccharomyces cerevisiae (SIRT1) is a nicotinamide adenine dinucleotide (NAD+)-dependent histone deacetylase that may also be involved in aging and diseases. SIRT1 also deacetylates a number of nonhistone target proteins, including p53, endothelial nitric oxide synthase and forkhead box protein. This review focuses on the latest scientific advances in understanding aging as well as delineates the possible therapeutic implications of p66(Shc) and SIRT1 in this process. Copyright (C) 2010 S. Karger AG, Basel
2011
calorie restriction; free radical-induced damage; reactive oxygen species
01 Pubblicazione su rivista::01a Articolo in rivista
Anti-Aging Medicine: Molecular Basis for Endothelial Cell-Targeted Strategies - A Mini-Review / Giovanni G., Camici; Yi, Shi; Cosentino, Francesco; Francia, Pietro; Thomas F., Luscher. - In: GERONTOLOGY. - ISSN 0304-324X. - 57:2(2011), pp. 101-108. [10.1159/000314227]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/146848
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 9
  • Scopus 24
  • ???jsp.display-item.citation.isi??? 25
social impact