We consider a weakly coupled system of discounted Hamilton-Jacobi equations set on a closed Riemannian manifold. We prove that the corresponding solutions converge to a specific solution of the limit system as the discount factor goes to 0. The analysis is based on a generalization of the theory of Mather minimizing measures for Hamilton-Jacobi systems and on suitable random representation formulae for the discounted solutions.

Convergence of the solutions of discounted Hamilton-Jacobi systems / Davini, A.; Zavidovique, M.. - In: ADVANCES IN CALCULUS OF VARIATIONS. - ISSN 1864-8258. - 0:0(2021). [10.1515/acv-2018-0037]

Convergence of the solutions of discounted Hamilton-Jacobi systems

Davini A.
;
2021

Abstract

We consider a weakly coupled system of discounted Hamilton-Jacobi equations set on a closed Riemannian manifold. We prove that the corresponding solutions converge to a specific solution of the limit system as the discount factor goes to 0. The analysis is based on a generalization of the theory of Mather minimizing measures for Hamilton-Jacobi systems and on suitable random representation formulae for the discounted solutions.
2021
Asymptotic behavior of solutions; mather measures; optimal control; viscosity solutions; weak KAM theory
01 Pubblicazione su rivista::01a Articolo in rivista
Convergence of the solutions of discounted Hamilton-Jacobi systems / Davini, A.; Zavidovique, M.. - In: ADVANCES IN CALCULUS OF VARIATIONS. - ISSN 1864-8258. - 0:0(2021). [10.1515/acv-2018-0037]
File allegati a questo prodotto
File Dimensione Formato  
Davini_Convergence-of-the-solutions_2019.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 824.53 kB
Formato Adobe PDF
824.53 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1468477
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 10
social impact