We exploit a suitable moment-based reparametrization of the Poisson mixtures distributions for developing classical and Bayesian inference for the unknown size of a finite population in the presence of count data. Here we put particular emphasis on suitable mappings between ordinary moments and recurrence coefficients that will allow us to implement standard maximization routines and MCMC routines in a more convenient parameter space. We assess the comparative performance of our approach in real data applications and in a simulation study.
Population size estimation via alternative parametrizations for Poisson mixture models / Catenacci, Francesco. - (2020 Dec 03).
Population size estimation via alternative parametrizations for Poisson mixture models
CATENACCI, FRANCESCO
03/12/2020
Abstract
We exploit a suitable moment-based reparametrization of the Poisson mixtures distributions for developing classical and Bayesian inference for the unknown size of a finite population in the presence of count data. Here we put particular emphasis on suitable mappings between ordinary moments and recurrence coefficients that will allow us to implement standard maximization routines and MCMC routines in a more convenient parameter space. We assess the comparative performance of our approach in real data applications and in a simulation study.| File | Dimensione | Formato | |
|---|---|---|---|
|
Tesi_dottorato_Catenacci.pdf
accesso aperto
Tipologia:
Tesi di dottorato
Licenza:
Creative commons
Dimensione
1.97 MB
Formato
Adobe PDF
|
1.97 MB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


