We consider the two-dimensional mean field equation of the equilibrium turbulence with variable intensities and Dirichlet boundary condition on a pierced domain −Δu=λ1 [Formula presented] −λ2τ [Formula presented] in Ωϵ=Ω∖⋃i=1mB(ξi,ϵi)¯u=0on ∂Ωϵ, where B(ξi,ϵi) is a ball centered at ξi∈Ω with radius ϵi, τ is a positive parameter and V1,V2>0 are smooth potentials. When λ1>8πm1 and λ2τ2>8π(m−m1) with m1∈{0,1,…,m}, there exist radii ϵ1,…,ϵm small enough such that the problem has a solution which blows-up positively and negatively at the points ξ1,…,ξmjavax.xml.bind.JAXBElement@b919342 and ξmjavax.xml.bind.JAXBElement@186c9427+1,…,ξm, respectively, as the radii approach zero.
On the mean field equation with variable intensities on pierced domains / Esposito, P.; Figueroa, P.; Pistoia, A.. - In: NONLINEAR ANALYSIS. - ISSN 0362-546X. - 190:(2020), p. 111597. [10.1016/j.na.2019.111597]
Titolo: | On the mean field equation with variable intensities on pierced domains | |
Autori: | PISTOIA, Angela (Corresponding author) | |
Data di pubblicazione: | 2020 | |
Rivista: | ||
Citazione: | On the mean field equation with variable intensities on pierced domains / Esposito, P.; Figueroa, P.; Pistoia, A.. - In: NONLINEAR ANALYSIS. - ISSN 0362-546X. - 190:(2020), p. 111597. [10.1016/j.na.2019.111597] | |
Handle: | http://hdl.handle.net/11573/1466917 | |
Appartiene alla tipologia: | 01a Articolo in rivista |
File allegati a questo prodotto
File | Note | Tipologia | Licenza | |
---|---|---|---|---|
Esposito_Mean_2020.pdf | Versione editoriale (versione pubblicata con il layout dell'editore) | Tutti i diritti riservati (All rights reserved) | Administrator Richiedi una copia |