A comparison among different constructions in ℍ^2 ≅ ℝ^8 of the quaternionic 4-form Φ_{Sp(2)Sp(1)} and of the Cayley calibration Φ_{Spin(7)} shows that one can start for them from the same collections of “Kähler 2-forms”, entering both in quaternion Kähler and in Spin(7) geometry. This comparison relates with the notions of even Clifford structure and of Clifford system. Going to dimension 16, similar constructions allow to write explicit formulas in ℝ^{16} for the canonical 4-forms Φ_{Spin(8)} and Φ_{Spin(7)U(1)}, associated with Clifford systems related with the subgroups Spin(8) and Spin(7)U(1) of SO(16). We characterize the calibrated 4-planes of the 4-forms Φ_{Spin(8)} and Φ_{Spin(7)U(1)}, extending in two different ways the notion of Cayley 4-plane to dimension 16.
Un confronto tra differenti costruzioni in ℍ^2 ≅ ℝ^8 della 4-forma quaternionale Φ_{Sp(2)Sp(1)} e della calibrazione di Cayley Φ_{Spin(7)} mostra che per esse si può partire dalle “2-forme di Kähler”, che entrano sia in geometria quaternionale kähleriana che Spin(7). Tale confronto si collega con le nozioni di struttura di Clifford pari e di sistema di Clifford. Passando alla dimensione 16, simili costruzioni consentono di scrivere formule esplicite in ℝ^{16} per le 4-forme canoniche Φ_{Spin(8)} e Φ_{Spin(7)U(1)}, associate a sistemi di Clifford legati ai sottogruppi Spin(8) e Spin(7)U(1) di SO(16). Si caratterizzano i 4-piani calibrati delle 4-forme Φ_{Spin(8)} e Φ_{Spin(7)U(1)}, estendendo in due diversi modi la nozione di 4-piano di Cayley alla dimensione 16.
Clifford systems, Clifford structures, and their canonical differential forms / Boydon, Kai Brynne M.; Piccinni, Paolo; Boydon, Kai Brynne M.; Piccinni, Paolo. - In: ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG. - ISSN 0025-5858. - 90:(2020). [10.1007/s12188-020-00229-5]
Clifford systems, Clifford structures, and their canonical differential forms
Piccinni, Paolo
;
2020
Abstract
A comparison among different constructions in ℍ^2 ≅ ℝ^8 of the quaternionic 4-form Φ_{Sp(2)Sp(1)} and of the Cayley calibration Φ_{Spin(7)} shows that one can start for them from the same collections of “Kähler 2-forms”, entering both in quaternion Kähler and in Spin(7) geometry. This comparison relates with the notions of even Clifford structure and of Clifford system. Going to dimension 16, similar constructions allow to write explicit formulas in ℝ^{16} for the canonical 4-forms Φ_{Spin(8)} and Φ_{Spin(7)U(1)}, associated with Clifford systems related with the subgroups Spin(8) and Spin(7)U(1) of SO(16). We characterize the calibrated 4-planes of the 4-forms Φ_{Spin(8)} and Φ_{Spin(7)U(1)}, extending in two different ways the notion of Cayley 4-plane to dimension 16.File | Dimensione | Formato | |
---|---|---|---|
Boydon_Cliford systems_2020.pdf
solo gestori archivio
Tipologia:
Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza:
Creative commons
Dimensione
1.5 MB
Formato
Adobe PDF
|
1.5 MB | Adobe PDF | Contatta l'autore |
Boydon_preprint_Cliford systems_2020.pdf
accesso aperto
Tipologia:
Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza:
Creative commons
Dimensione
197.27 kB
Formato
Adobe PDF
|
197.27 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.