Disorder plays an essential role in shaping the transport properties of GeSbTe phase-change materials (PCMs) to enable nonvolatile memory technology. Recently, increasing efforts have been undertaken to investigate disorder in the stable hexagonal phase of GeSbTe compounds, focusing on a special type of swapping bilayer defects. This configuration has been claimed to be the key element for a new mechanism for phase-change memory. Here, we report a direct atomic-scale chemical identification of these swapping bilayer defects in hexagonal GeSb2Te4 together with nanoscale atomic modeling and simulations. We identify the intermixing of Sb and Te in the bilayer to be the essential ingredient for the stability of the defects, and elucidate their abundance as due to the small energy cost. The bilayer defects are demonstrated to be ineffective in altering the electron localization nature that is relevant to transport properties of hexagonal GeSb2Te4. Our work paves the way for future studies of layer-switching dynamics in GeSbTe at the atomic and electronic level, which could be important to understand the new switching mechanism relevant to interfacial phase-change memory.

Genesis and effects of swapping bilayers in hexagonal GeSb2Te4 / Wang, J. -J.; Wang, J.; Du, H.; Lu, L.; Schmitz, P. C.; Reindl, J.; Mio, A. M.; Jia, C. -L.; Ma, E.; Mazzarello, R.; Wuttig, M.; Zhang, W.. - In: CHEMISTRY OF MATERIALS. - ISSN 0897-4756. - 30:14(2018), pp. 4770-4777. [10.1021/acs.chemmater.8b01900]

Genesis and effects of swapping bilayers in hexagonal GeSb2Te4

Mazzarello R.;
2018

Abstract

Disorder plays an essential role in shaping the transport properties of GeSbTe phase-change materials (PCMs) to enable nonvolatile memory technology. Recently, increasing efforts have been undertaken to investigate disorder in the stable hexagonal phase of GeSbTe compounds, focusing on a special type of swapping bilayer defects. This configuration has been claimed to be the key element for a new mechanism for phase-change memory. Here, we report a direct atomic-scale chemical identification of these swapping bilayer defects in hexagonal GeSb2Te4 together with nanoscale atomic modeling and simulations. We identify the intermixing of Sb and Te in the bilayer to be the essential ingredient for the stability of the defects, and elucidate their abundance as due to the small energy cost. The bilayer defects are demonstrated to be ineffective in altering the electron localization nature that is relevant to transport properties of hexagonal GeSb2Te4. Our work paves the way for future studies of layer-switching dynamics in GeSbTe at the atomic and electronic level, which could be important to understand the new switching mechanism relevant to interfacial phase-change memory.
2018
Phase-change materials; chalcogenides; ab initio simulations; non-volatile memories
01 Pubblicazione su rivista::01a Articolo in rivista
Genesis and effects of swapping bilayers in hexagonal GeSb2Te4 / Wang, J. -J.; Wang, J.; Du, H.; Lu, L.; Schmitz, P. C.; Reindl, J.; Mio, A. M.; Jia, C. -L.; Ma, E.; Mazzarello, R.; Wuttig, M.; Zhang, W.. - In: CHEMISTRY OF MATERIALS. - ISSN 0897-4756. - 30:14(2018), pp. 4770-4777. [10.1021/acs.chemmater.8b01900]
File allegati a questo prodotto
File Dimensione Formato  
Mazzarello_Swapping-bilayers_2018.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 650.22 kB
Formato Adobe PDF
650.22 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1465793
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 38
  • ???jsp.display-item.citation.isi??? 36
social impact