Abstract Ferulic acid ethyl ester (FAEE) is an ester derivative of ferulic acid, the latter known for its anti-inflammatory and antioxidant properties. Previous studies from our laboratory have shown that ferulic acid protects synaptosomal membrane system and neuronal cell culture systems against hydroxyl and peroxyl radical oxidation. FAEE is lipophilic and is able to penetrate lipid bilayer. Previous studies reported that FAEE reduces Alzheimer's amyloid beta peptide Abeta(1-42)-induced oxidative stress and cytotoxicity in neuronal cell culture by direct radical scavenging and by inducing certain antioxidant proteins. In the present study we tested the hypothesis that FAEE would provide neuroprotection against free radical oxidative stress in vivo. Synaptosomes were isolated from the gerbils that were previously injected intraperitoneally (i.p.) with FAEE or DMSO and were treated with oxidants, Fe(2+)/H(2)O(2) or 2,2-azobis(2-amidino-propane)dihydrochloride (AAPH). Synaptosomes isolated from the gerbil previously injected i.p. with FAEE and treated with Fe(2+)/H(2)O(2) and AAPH showed significant reduction in reactive oxygen species (ROS), levels of protein carbonyl, protein bound 4-hydroxynonenal (HNE, a lipid peroxidation product), and 3-nitrotyrosine (3-NT, another marker of protein oxidation formed by reaction of tyrosine residues with peroxynitrite) compared to Fe(2+)/H(2)O(2) or AAPH induced oxidative stress in synapotosomes isolated from the brain of gerbils that were previously injected with DMSO. The synaptosomes isolated from gerbil pre-injected with FAEE and subsequently treated with AAPH or Fe(2+)/H(2)O(2) showed induction of heme oxygenase (HO-1) and heat shock protein 70 (HSP-70) but reduced inducible nitric oxide synthase (iNOS) levels. These results are discussed with reference to potential use of this lipophilic antioxidant phenolic compound in the treatment of oxidative stress-related neurodegenerative disorders.

In vivo protection of synaptosomes by ferulic acid ethyl ester (FAEE) from oxidative stress mediated by 2,2-azobis(2-amidino-propane)dihydrochloride (AAPH) or Fe(2+)H(2)O(2): insight into mechanisms of neuroprotection and relevance to oxidative stress-related neurodegenerative disorders / Joshi, G; Perluigi, Marzia; Sultana, R; Agrippino, R; Calabrese, V; Butterfield, D. A.. - In: NEUROCHEMISTRY INTERNATIONAL. - ISSN 0197-0186. - 48:(2006), pp. 318-327. [10.1016/j.neuint.2005.11.006]

In vivo protection of synaptosomes by ferulic acid ethyl ester (FAEE) from oxidative stress mediated by 2,2-azobis(2-amidino-propane)dihydrochloride (AAPH) or Fe(2+)H(2)O(2): insight into mechanisms of neuroprotection and relevance to oxidative stress-related neurodegenerative disorders.

PERLUIGI, Marzia;
2006

Abstract

Abstract Ferulic acid ethyl ester (FAEE) is an ester derivative of ferulic acid, the latter known for its anti-inflammatory and antioxidant properties. Previous studies from our laboratory have shown that ferulic acid protects synaptosomal membrane system and neuronal cell culture systems against hydroxyl and peroxyl radical oxidation. FAEE is lipophilic and is able to penetrate lipid bilayer. Previous studies reported that FAEE reduces Alzheimer's amyloid beta peptide Abeta(1-42)-induced oxidative stress and cytotoxicity in neuronal cell culture by direct radical scavenging and by inducing certain antioxidant proteins. In the present study we tested the hypothesis that FAEE would provide neuroprotection against free radical oxidative stress in vivo. Synaptosomes were isolated from the gerbils that were previously injected intraperitoneally (i.p.) with FAEE or DMSO and were treated with oxidants, Fe(2+)/H(2)O(2) or 2,2-azobis(2-amidino-propane)dihydrochloride (AAPH). Synaptosomes isolated from the gerbil previously injected i.p. with FAEE and treated with Fe(2+)/H(2)O(2) and AAPH showed significant reduction in reactive oxygen species (ROS), levels of protein carbonyl, protein bound 4-hydroxynonenal (HNE, a lipid peroxidation product), and 3-nitrotyrosine (3-NT, another marker of protein oxidation formed by reaction of tyrosine residues with peroxynitrite) compared to Fe(2+)/H(2)O(2) or AAPH induced oxidative stress in synapotosomes isolated from the brain of gerbils that were previously injected with DMSO. The synaptosomes isolated from gerbil pre-injected with FAEE and subsequently treated with AAPH or Fe(2+)/H(2)O(2) showed induction of heme oxygenase (HO-1) and heat shock protein 70 (HSP-70) but reduced inducible nitric oxide synthase (iNOS) levels. These results are discussed with reference to potential use of this lipophilic antioxidant phenolic compound in the treatment of oxidative stress-related neurodegenerative disorders.
2006
01 Pubblicazione su rivista::01a Articolo in rivista
In vivo protection of synaptosomes by ferulic acid ethyl ester (FAEE) from oxidative stress mediated by 2,2-azobis(2-amidino-propane)dihydrochloride (AAPH) or Fe(2+)H(2)O(2): insight into mechanisms of neuroprotection and relevance to oxidative stress-related neurodegenerative disorders / Joshi, G; Perluigi, Marzia; Sultana, R; Agrippino, R; Calabrese, V; Butterfield, D. A.. - In: NEUROCHEMISTRY INTERNATIONAL. - ISSN 0197-0186. - 48:(2006), pp. 318-327. [10.1016/j.neuint.2005.11.006]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/146509
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 21
  • Scopus 121
  • ???jsp.display-item.citation.isi??? 108
social impact