Abstract D609 (tricyclodecan-9-yl-xanthogenate) is a phosphatidylcholine-specific phospholipase C inhibitor that also has been reported to protect rodents against oxidative damage caused by lethal doses of ionizing radiation. We previously showed that D609 mimics glutathione. D609 has a free thiol group, which upon oxidation forms a disulfide. The resulting dixanthate is a substrate for glutathione reductase, regenerating D609. Recent studies from our laboratory have also shown that D609 reduces the Alzheimer amyloid beta-peptide (1-42)-induced oxidative stress and cytotoxicity in neuronal cell culture. The present study was undertaken to test the hypothesis that D609 would provide neuroprotection against free radical oxidative stress in vivo. Synaptosomes isolated from gerbils, previously injected intraperitoneally (ip) with D609, were treated with the oxidants Fe2+/H2O2 or 2,2-azobis-(2-amidinopropane) dihydrochloride (AAPH), which produce free radicals. Synaptosomes isolated from the gerbils ip injected with D609 and treated with Fe2+/H2O2 or AAPH showed significant reduction in reactive oxygen species, levels of protein carbonyl, protein-bound hydroxynonenal (a lipid peroxidation product), and 3-nitrotyrosine (another marker of protein oxidation formed by reaction of tyrosine residues with peroxynitrite) compared to oxidative stress in synaptosomes isolated from gerbils that were injected with saline, but treated with Fe2+/H2O2 or AAPH. These results are discussed with reference to the potential use of this brain-accessible glutathione mimetic in the treatment of oxidative stress-related neurodegenerative disorders.

In vivo protection of synaptosomes from oxidative stress mediated by Fe2+/h2O2 or 2,2-azobis-(2-amidinopropane) dihydrochloride by the glutathione mimetic tricyclodecan-9-yl-xanthogenate / Josgi, G; Sultana, R; Perluigi, Marzia; Butterfield, D. A.. - In: FREE RADICAL BIOLOGY & MEDICINE. - ISSN 0891-5849. - 38:(2005), pp. 1023-1031. [10.1016/j.freeradbiomed.2004.12.027]

In vivo protection of synaptosomes from oxidative stress mediated by Fe2+/h2O2 or 2,2-azobis-(2-amidinopropane) dihydrochloride by the glutathione mimetic tricyclodecan-9-yl-xanthogenate.

PERLUIGI, Marzia;
2005

Abstract

Abstract D609 (tricyclodecan-9-yl-xanthogenate) is a phosphatidylcholine-specific phospholipase C inhibitor that also has been reported to protect rodents against oxidative damage caused by lethal doses of ionizing radiation. We previously showed that D609 mimics glutathione. D609 has a free thiol group, which upon oxidation forms a disulfide. The resulting dixanthate is a substrate for glutathione reductase, regenerating D609. Recent studies from our laboratory have also shown that D609 reduces the Alzheimer amyloid beta-peptide (1-42)-induced oxidative stress and cytotoxicity in neuronal cell culture. The present study was undertaken to test the hypothesis that D609 would provide neuroprotection against free radical oxidative stress in vivo. Synaptosomes isolated from gerbils, previously injected intraperitoneally (ip) with D609, were treated with the oxidants Fe2+/H2O2 or 2,2-azobis-(2-amidinopropane) dihydrochloride (AAPH), which produce free radicals. Synaptosomes isolated from the gerbils ip injected with D609 and treated with Fe2+/H2O2 or AAPH showed significant reduction in reactive oxygen species, levels of protein carbonyl, protein-bound hydroxynonenal (a lipid peroxidation product), and 3-nitrotyrosine (another marker of protein oxidation formed by reaction of tyrosine residues with peroxynitrite) compared to oxidative stress in synaptosomes isolated from gerbils that were injected with saline, but treated with Fe2+/H2O2 or AAPH. These results are discussed with reference to the potential use of this brain-accessible glutathione mimetic in the treatment of oxidative stress-related neurodegenerative disorders.
2005
01 Pubblicazione su rivista::01a Articolo in rivista
In vivo protection of synaptosomes from oxidative stress mediated by Fe2+/h2O2 or 2,2-azobis-(2-amidinopropane) dihydrochloride by the glutathione mimetic tricyclodecan-9-yl-xanthogenate / Josgi, G; Sultana, R; Perluigi, Marzia; Butterfield, D. A.. - In: FREE RADICAL BIOLOGY & MEDICINE. - ISSN 0891-5849. - 38:(2005), pp. 1023-1031. [10.1016/j.freeradbiomed.2004.12.027]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/146505
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 11
  • Scopus 41
  • ???jsp.display-item.citation.isi??? 39
social impact