We devise a new geometric approach to study the propagation of disturbance – compactly supported data – in reaction–diffusion equations. The method builds a bridge between the propagation of disturbance and of almost planar solutions. It applies to very general reaction–diffusion equations. The main consequences we derive in this paper are: a new proof of the classical Freidlin–Gärtner formula for the asymptotic speed of spreading for periodic Fisher–KPP equations; extension of the formula to the monostable, combustion and bistable cases; existence of the asymptotic speed of spreading for equations with almost periodic temporal dependence; derivation of multi-tiered propagation for multistable equations.

The Freidlin–Gärtner formula for general reaction terms / Rossi, L.. - In: ADVANCES IN MATHEMATICS. - ISSN 0001-8708. - 317:(2017), pp. 267-298. [10.1016/j.aim.2017.07.002]

The Freidlin–Gärtner formula for general reaction terms

Rossi L.
2017

Abstract

We devise a new geometric approach to study the propagation of disturbance – compactly supported data – in reaction–diffusion equations. The method builds a bridge between the propagation of disturbance and of almost planar solutions. It applies to very general reaction–diffusion equations. The main consequences we derive in this paper are: a new proof of the classical Freidlin–Gärtner formula for the asymptotic speed of spreading for periodic Fisher–KPP equations; extension of the formula to the monostable, combustion and bistable cases; existence of the asymptotic speed of spreading for equations with almost periodic temporal dependence; derivation of multi-tiered propagation for multistable equations.
2017
Freidlin–Gärtner formula; reaction–diffusion equations; spreading speed; transition fronts
01 Pubblicazione su rivista::01a Articolo in rivista
The Freidlin–Gärtner formula for general reaction terms / Rossi, L.. - In: ADVANCES IN MATHEMATICS. - ISSN 0001-8708. - 317:(2017), pp. 267-298. [10.1016/j.aim.2017.07.002]
File allegati a questo prodotto
File Dimensione Formato  
Rossi_preprint_The-Freidlin-G¨artner-formula_2017.pdf

accesso aperto

Tipologia: Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza: Creative commons
Dimensione 522.62 kB
Formato Adobe PDF
522.62 kB Adobe PDF
Rossi_The-Freidlin-G¨artner-formula_2017.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 636.16 kB
Formato Adobe PDF
636.16 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1464901
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 12
social impact