We derive the long time asymptotic of solutions to an evolutive Hamilton-Jacobi-Bellman equation in a bounded smooth domain, in connection with ergodic problems recently studied in [1]. Our main assumption is an appropriate degeneracy condition on the operator at the boundary. This condition is related to the characteristic boundary points for linear operators as well as to the irrelevant points for the generalized Dirichlet problem, and implies in particular that no boundary datum has to be imposed. We prove that there exists a constant c such that the solutions of the evolutive problem converge uniformly, in the reference frame moving with constant velocity c, to a unique steady state solving a suitable ergodic problem.
On a parabolic Hamilton-Jacobi-Bellman equation degenerating at the boundary / Castorina, D.; Cesaroni, A.; Rossi, L.. - In: COMMUNICATIONS ON PURE AND APPLIED ANALYSIS. - ISSN 1534-0392. - 15:4(2016), pp. 1251-1263.
Titolo: | On a parabolic Hamilton-Jacobi-Bellman equation degenerating at the boundary | |
Autori: | ||
Data di pubblicazione: | 2016 | |
Rivista: | ||
Citazione: | On a parabolic Hamilton-Jacobi-Bellman equation degenerating at the boundary / Castorina, D.; Cesaroni, A.; Rossi, L.. - In: COMMUNICATIONS ON PURE AND APPLIED ANALYSIS. - ISSN 1534-0392. - 15:4(2016), pp. 1251-1263. | |
Handle: | http://hdl.handle.net/11573/1464830 | |
Appartiene alla tipologia: | 01a Articolo in rivista |
File allegati a questo prodotto
File | Note | Tipologia | Licenza | |
---|---|---|---|---|
Castorina_preprint_On-a-parabolic-Hamilton-Jacobi-Bellman-equation_2016.pdf | Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review) | ![]() | Open Access Visualizza/Apri | |
Castorina_On-a-parabolic-Hamilton-Jacobi-Bellman-equation_2016.pdf | Versione editoriale (versione pubblicata con il layout dell'editore) | Tutti i diritti riservati (All rights reserved) | Administrator Richiedi una copia |