We introduce several notions of generalised principal eigenvalue for a linear elliptic operator on a general unbounded domain, under boundary condition of the oblique derivative type. We employ these notions in the stability analysis of semilinear problems. Some of the properties we derive are new even in the Dirichlet or in the whole space cases. As an application, we show the validity of the hair-trigger effect for the Fisher-KPP equation on general, uniformly smooth domains.

Stability analysis for semilinear parabolic problems in general unbounded domains / Rossi, L.. - In: JOURNAL OF FUNCTIONAL ANALYSIS. - ISSN 0022-1236. - 279:7(2020). [10.1016/j.jfa.2020.108657]

Stability analysis for semilinear parabolic problems in general unbounded domains

Rossi L.
2020

Abstract

We introduce several notions of generalised principal eigenvalue for a linear elliptic operator on a general unbounded domain, under boundary condition of the oblique derivative type. We employ these notions in the stability analysis of semilinear problems. Some of the properties we derive are new even in the Dirichlet or in the whole space cases. As an application, we show the validity of the hair-trigger effect for the Fisher-KPP equation on general, uniformly smooth domains.
2020
Generalised principal eigenvalue; oblique derivative; reaction-diffusion equations; stability analysis
01 Pubblicazione su rivista::01a Articolo in rivista
Stability analysis for semilinear parabolic problems in general unbounded domains / Rossi, L.. - In: JOURNAL OF FUNCTIONAL ANALYSIS. - ISSN 0022-1236. - 279:7(2020). [10.1016/j.jfa.2020.108657]
File allegati a questo prodotto
File Dimensione Formato  
Rossi_preprint_Stability-analysis_2020.pdf

accesso aperto

Tipologia: Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza: Creative commons
Dimensione 505.67 kB
Formato Adobe PDF
505.67 kB Adobe PDF
Rossi_Stability-analysis_2020.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 617.78 kB
Formato Adobe PDF
617.78 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1464710
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact