Coresets are one of the central methods to facilitate the analysis of large data.We continue a recent line of research applying the theory of coresets to logistic regression. First, we show the negative result that no strongly sublinear sized coresets exist for logistic regression. To deal with intractable worst-case instances we introduce a complexity measure μ(X), which quantiAes the hardness of compressing a data set for logistic regression. μ(X) has an intuitive statistical interpretation that may be of independent interest. For data sets with bounded μ(X)-complexity, we show that a novel sensitivity sampling scheme produces the Arst provably sublinear (1 ± ϵ)-coreset.

On coresets for logistic regression / Munteanu, A.; Schwiegelshohn, C.; Sohler, C.; Woodruff, D. P.. - 294:(2019), pp. 267-268. (Intervento presentato al convegno 49. Jahrestagung der Gesellschaft fur Informatik: 50 Jahre Gesellschaft fur Informatik - Informatik fur Gesellschaft, INFORMATIK 2019 - 49th Annual Meeting of the German Informatics Society: 50 years of the German Informatics Society - Computer Science for Society, INFORMATICS 2019 tenutosi a Kassel; Germany) [10.18420/inf2019_37].

On coresets for logistic regression

Schwiegelshohn C.;Sohler C.;
2019

Abstract

Coresets are one of the central methods to facilitate the analysis of large data.We continue a recent line of research applying the theory of coresets to logistic regression. First, we show the negative result that no strongly sublinear sized coresets exist for logistic regression. To deal with intractable worst-case instances we introduce a complexity measure μ(X), which quantiAes the hardness of compressing a data set for logistic regression. μ(X) has an intuitive statistical interpretation that may be of independent interest. For data sets with bounded μ(X)-complexity, we show that a novel sensitivity sampling scheme produces the Arst provably sublinear (1 ± ϵ)-coreset.
2019
49. Jahrestagung der Gesellschaft fur Informatik: 50 Jahre Gesellschaft fur Informatik - Informatik fur Gesellschaft, INFORMATIK 2019 - 49th Annual Meeting of the German Informatics Society: 50 years of the German Informatics Society - Computer Science for Society, INFORMATICS 2019
Beyond worst-case analysis; Coresets; Logistic regression; Lower bounds
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
On coresets for logistic regression / Munteanu, A.; Schwiegelshohn, C.; Sohler, C.; Woodruff, D. P.. - 294:(2019), pp. 267-268. (Intervento presentato al convegno 49. Jahrestagung der Gesellschaft fur Informatik: 50 Jahre Gesellschaft fur Informatik - Informatik fur Gesellschaft, INFORMATIK 2019 - 49th Annual Meeting of the German Informatics Society: 50 years of the German Informatics Society - Computer Science for Society, INFORMATICS 2019 tenutosi a Kassel; Germany) [10.18420/inf2019_37].
File allegati a questo prodotto
File Dimensione Formato  
Munteanu_On-coresets_2019.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 77.01 kB
Formato Adobe PDF
77.01 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1464515
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact