In this paper we consider a partial overdetermined mixed boundary value problem in domains inside a cone as in [18]. We show that, in cones having an isoperimetric property, the only domains which admit a solution and which minimize a torsional energy functional are spherical sectors centered at the vertex of the cone. We also show that cones close in the C1,1-metric to an isoperimetric one are also isoperimetric, generalizing so a result of [1]. This is achieved by using a characterization of constant mean curvature polar graphs in cones which improves a resultof [18].

Isoperimetric cones and minimal solutions of partial overdetermined problems / Pacella, Filomena; Tralli, Giulio. - In: PUBLICACIONS MATEMÀTIQUES. - ISSN 0214-1493. - 65:(2021), pp. 61-81. [10.5565/PUBLMAT6512102]

Isoperimetric cones and minimal solutions of partial overdetermined problems

Pacella, Filomena
;
2021

Abstract

In this paper we consider a partial overdetermined mixed boundary value problem in domains inside a cone as in [18]. We show that, in cones having an isoperimetric property, the only domains which admit a solution and which minimize a torsional energy functional are spherical sectors centered at the vertex of the cone. We also show that cones close in the C1,1-metric to an isoperimetric one are also isoperimetric, generalizing so a result of [1]. This is achieved by using a characterization of constant mean curvature polar graphs in cones which improves a resultof [18].
2021
Overdetermined problem; constant mean curvature surfaces; cones
01 Pubblicazione su rivista::01a Articolo in rivista
Isoperimetric cones and minimal solutions of partial overdetermined problems / Pacella, Filomena; Tralli, Giulio. - In: PUBLICACIONS MATEMÀTIQUES. - ISSN 0214-1493. - 65:(2021), pp. 61-81. [10.5565/PUBLMAT6512102]
File allegati a questo prodotto
File Dimensione Formato  
Pacella_Isoperimetric_2020.pdf

accesso aperto

Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Creative commons
Dimensione 388.63 kB
Formato Adobe PDF
388.63 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1464114
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 7
social impact