We investigate in this paper propagation phenomena for the heterogeneous reaction-diffusion equation. ∂tu-δu=f(t,u), x∈RN, t∈R, where f=f(t, u) is a KPP monostable nonlinearity which depends in a general way on t∈R. A typical f which satisfies our hypotheses is f(t, u) = μ(t) u(1 - u), with μ∈L∞(R) such that essinft∈Rμ(t)>0. We first prove the existence of generalized transition waves (recently defined in Berestycki and Hamel (2007) [4]) for a given class of speeds. As an application of this result, we obtain the existence of random transition waves when f is a random stationary ergodic function with respect to t∈R. Lastly, we prove some spreading properties for the solution of the Cauchy problem. © 2012 Elsevier Masson SAS.

Propagation phenomena for time heterogeneous KPP reaction-diffusion equations / Nadin, G.; Rossi, L.. - In: JOURNAL DE MATHÉMATIQUES PURES ET APPLIQUÉES. - ISSN 0021-7824. - 98:6(2012), pp. 633-653. [10.1016/j.matpur.2012.05.005]

Propagation phenomena for time heterogeneous KPP reaction-diffusion equations

Rossi L.
2012

Abstract

We investigate in this paper propagation phenomena for the heterogeneous reaction-diffusion equation. ∂tu-δu=f(t,u), x∈RN, t∈R, where f=f(t, u) is a KPP monostable nonlinearity which depends in a general way on t∈R. A typical f which satisfies our hypotheses is f(t, u) = μ(t) u(1 - u), with μ∈L∞(R) such that essinft∈Rμ(t)>0. We first prove the existence of generalized transition waves (recently defined in Berestycki and Hamel (2007) [4]) for a given class of speeds. As an application of this result, we obtain the existence of random transition waves when f is a random stationary ergodic function with respect to t∈R. Lastly, we prove some spreading properties for the solution of the Cauchy problem. © 2012 Elsevier Masson SAS.
2012
Generalized transition waves; heterogeneous reaction-diffusion equations; spreading properties
01 Pubblicazione su rivista::01a Articolo in rivista
Propagation phenomena for time heterogeneous KPP reaction-diffusion equations / Nadin, G.; Rossi, L.. - In: JOURNAL DE MATHÉMATIQUES PURES ET APPLIQUÉES. - ISSN 0021-7824. - 98:6(2012), pp. 633-653. [10.1016/j.matpur.2012.05.005]
File allegati a questo prodotto
File Dimensione Formato  
Nadin_Propagation-phenomena_2012.pdf

accesso aperto

Tipologia: Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 367.04 kB
Formato Adobe PDF
367.04 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1464024
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 61
  • ???jsp.display-item.citation.isi??? 59
social impact