We investigate in this paper propagation phenomena for the heterogeneous reaction-diffusion equation. ∂tu-δu=f(t,u), x∈RN, t∈R, where f=f(t, u) is a KPP monostable nonlinearity which depends in a general way on t∈R. A typical f which satisfies our hypotheses is f(t, u) = μ(t) u(1 - u), with μ∈L∞(R) such that essinft∈Rμ(t)>0. We first prove the existence of generalized transition waves (recently defined in Berestycki and Hamel (2007) [4]) for a given class of speeds. As an application of this result, we obtain the existence of random transition waves when f is a random stationary ergodic function with respect to t∈R. Lastly, we prove some spreading properties for the solution of the Cauchy problem. © 2012 Elsevier Masson SAS.
Propagation phenomena for time heterogeneous KPP reaction-diffusion equations / Nadin, G.; Rossi, L.. - In: JOURNAL DE MATHÉMATIQUES PURES ET APPLIQUÉES. - ISSN 0021-7824. - 98:6(2012), pp. 633-653. [10.1016/j.matpur.2012.05.005]
Propagation phenomena for time heterogeneous KPP reaction-diffusion equations
Rossi L.
2012
Abstract
We investigate in this paper propagation phenomena for the heterogeneous reaction-diffusion equation. ∂tu-δu=f(t,u), x∈RN, t∈R, where f=f(t, u) is a KPP monostable nonlinearity which depends in a general way on t∈R. A typical f which satisfies our hypotheses is f(t, u) = μ(t) u(1 - u), with μ∈L∞(R) such that essinft∈Rμ(t)>0. We first prove the existence of generalized transition waves (recently defined in Berestycki and Hamel (2007) [4]) for a given class of speeds. As an application of this result, we obtain the existence of random transition waves when f is a random stationary ergodic function with respect to t∈R. Lastly, we prove some spreading properties for the solution of the Cauchy problem. © 2012 Elsevier Masson SAS.File | Dimensione | Formato | |
---|---|---|---|
Nadin_Propagation-phenomena_2012.pdf
accesso aperto
Tipologia:
Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
367.04 kB
Formato
Adobe PDF
|
367.04 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.