Using three different notions of the generalized principal eigenvalue of linear second-order elliptic operators in unbounded domains, we derive necessary and sufficient conditions for the validity of the maximum principle, as well as for the existence of positive eigenfunctions for the Dirichlet problem. Relations between these principal eigenvalues, their simplicity, and several other properties are further discussed.
Generalizations and properties of the principal eigenvalue of elliptic operators in unbounded domains / Berestycki, H.; Rossi, L.. - In: COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS. - ISSN 0010-3640. - 68:6(2015), pp. 1014-1065. [10.1002/cpa.21536]
Generalizations and properties of the principal eigenvalue of elliptic operators in unbounded domains
Rossi L.
2015
Abstract
Using three different notions of the generalized principal eigenvalue of linear second-order elliptic operators in unbounded domains, we derive necessary and sufficient conditions for the validity of the maximum principle, as well as for the existence of positive eigenfunctions for the Dirichlet problem. Relations between these principal eigenvalues, their simplicity, and several other properties are further discussed.File | Dimensione | Formato | |
---|---|---|---|
Berestycki_preprint_Generalizations_2015.pdf
accesso aperto
Tipologia:
Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza:
Creative commons
Dimensione
333.28 kB
Formato
Adobe PDF
|
333.28 kB | Adobe PDF | |
Berestycki_Generalizations_2015.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
449.99 kB
Formato
Adobe PDF
|
449.99 kB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.