Using three different notions of the generalized principal eigenvalue of linear second-order elliptic operators in unbounded domains, we derive necessary and sufficient conditions for the validity of the maximum principle, as well as for the existence of positive eigenfunctions for the Dirichlet problem. Relations between these principal eigenvalues, their simplicity, and several other properties are further discussed.
Generalizations and properties of the principal eigenvalue of elliptic operators in unbounded domains / Berestycki, H.; Rossi, L.. - In: COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS. - ISSN 0010-3640. - 68:6(2015), pp. 1014-1065.
Titolo: | Generalizations and properties of the principal eigenvalue of elliptic operators in unbounded domains | |
Autori: | ROSSI, LUCA (Corresponding author) | |
Data di pubblicazione: | 2015 | |
Rivista: | ||
Citazione: | Generalizations and properties of the principal eigenvalue of elliptic operators in unbounded domains / Berestycki, H.; Rossi, L.. - In: COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS. - ISSN 0010-3640. - 68:6(2015), pp. 1014-1065. | |
Handle: | http://hdl.handle.net/11573/1463992 | |
Appartiene alla tipologia: | 01a Articolo in rivista |
File allegati a questo prodotto
File | Note | Tipologia | Licenza | |
---|---|---|---|---|
Berestycki_preprint_Generalizations_2015.pdf | Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review) | ![]() | Open Access Visualizza/Apri | |
Berestycki_Generalizations_2015.pdf | Versione editoriale (versione pubblicata con il layout dell'editore) | Tutti i diritti riservati (All rights reserved) | Administrator Richiedi una copia |