The asymmetric Laplace likelihood naturally arises in the estimation of conditional quantiles of a response variable given covariates. The estimation of its parameters entails unconstrained maximization of a concave and non-differentiable function over the real space. In this note, we describe a maximization algorithm based on the gradient of the log-likelihood that generates a finite sequence of parameter values along which the likelihood increases. The algorithm can be applied to the estimation of mixed-effects quantile regression, Laplace regression with censored data, and other models based on Laplace likelihood. In a simulation study and in a number of real-data applications, the proposed algorithm has shown notable computational speed.

A gradient search maximization algorithm for the asymmetric Laplace likelihood / Bottai, M; Orsini, N; Geraci, M. - In: JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION. - ISSN 0094-9655. - 85:10(2014), pp. 1919-1925. [10.1080/00949655.2014.908879]

A gradient search maximization algorithm for the asymmetric Laplace likelihood

GERACI M
2014

Abstract

The asymmetric Laplace likelihood naturally arises in the estimation of conditional quantiles of a response variable given covariates. The estimation of its parameters entails unconstrained maximization of a concave and non-differentiable function over the real space. In this note, we describe a maximization algorithm based on the gradient of the log-likelihood that generates a finite sequence of parameter values along which the likelihood increases. The algorithm can be applied to the estimation of mixed-effects quantile regression, Laplace regression with censored data, and other models based on Laplace likelihood. In a simulation study and in a number of real-data applications, the proposed algorithm has shown notable computational speed.
2014
quantile regression; Laplace regression; mixed-effects quantile regression; asymmetric Laplace distribution; direct search optimization algorithms
01 Pubblicazione su rivista::01a Articolo in rivista
A gradient search maximization algorithm for the asymmetric Laplace likelihood / Bottai, M; Orsini, N; Geraci, M. - In: JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION. - ISSN 0094-9655. - 85:10(2014), pp. 1919-1925. [10.1080/00949655.2014.908879]
File allegati a questo prodotto
File Dimensione Formato  
Geraci_ gradient-search_2014.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 120.26 kB
Formato Adobe PDF
120.26 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1463936
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 16
social impact