We develop regression methods for inference on conditional quantiles of time‐to‐transition in multistate processes. Special cases include survival, recurrent event, semicompeting, and competing risk data. We use an ad hoc representation of the underlying stochastic process, in conjunction with methods for censored quantile regression. In a simulation study, we demonstrate that the proposed approach has a superior finite sample performance over simple methods for censored quantile regression, which naively assume independence between states, and over methods for competing risks, even when the latter are applied to competing risk data settings. We apply our approach to data on hospital‐acquired infections in cirrhotic patients, showing a quantile‐dependent effect of catheterization on time to infection.
Multistate quantile regression models / Farcomeni, Alessio; Geraci, Marco. - In: STATISTICS IN MEDICINE. - ISSN 0277-6715. - 39:1(2020), pp. 45-56. [10.1002/sim.8393]
Titolo: | Multistate quantile regression models | |
Autori: | ||
Data di pubblicazione: | 2020 | |
Rivista: | ||
Citazione: | Multistate quantile regression models / Farcomeni, Alessio; Geraci, Marco. - In: STATISTICS IN MEDICINE. - ISSN 0277-6715. - 39:1(2020), pp. 45-56. [10.1002/sim.8393] | |
Handle: | http://hdl.handle.net/11573/1463868 | |
Appartiene alla tipologia: | 01a Articolo in rivista |
File allegati a questo prodotto
File | Note | Tipologia | Licenza | |
---|---|---|---|---|
Geraci_Multistate-quantile_2020.pdf | Versione editoriale (versione pubblicata con il layout dell'editore) | Tutti i diritti riservati (All rights reserved) | Administrator Richiedi una copia |