We consider parabolic nonlocal Venttsel' problems in polygonal and piecewise smooth two-dimensional domains and study existence, uniqueness and regularity in (anisotropic) weighted Sobolev spaces of the solution. The nonlocal term can be regarded as a regional fractional Laplacian on the boundary. The regularity results deeply rely on a priori estimates, obtained via the so-called Munchhausen trick, and sophisticated extension theorem for anisotropic weighted Sobolev spaces.
Regularity results for nonlocal evolution Venttsel' problems / Creo, S.; Lancia, M. R.; Nazarov, A. I.. - In: FRACTIONAL CALCULUS & APPLIED ANALYSIS. - ISSN 1311-0454. - 23:5(2020), pp. 1416-1430. [10.1515/fca-2020-0070]
Regularity results for nonlocal evolution Venttsel' problems
Creo S.
;Lancia M. R.;
2020
Abstract
We consider parabolic nonlocal Venttsel' problems in polygonal and piecewise smooth two-dimensional domains and study existence, uniqueness and regularity in (anisotropic) weighted Sobolev spaces of the solution. The nonlocal term can be regarded as a regional fractional Laplacian on the boundary. The regularity results deeply rely on a priori estimates, obtained via the so-called Munchhausen trick, and sophisticated extension theorem for anisotropic weighted Sobolev spaces.File | Dimensione | Formato | |
---|---|---|---|
Creo_Regularity_2020.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
986.99 kB
Formato
Adobe PDF
|
986.99 kB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.