We analyze the Gallavotti-Cohen functional, defined as the empirical power dissipated by the non conservative part of the drift, fora diffusion process in R-n. In particular we prove a large deviation principle in the limit in which the noise vanishes and the time interval diverges. The corresponding rate functional, which satisfies the fluctuation theorem, is expressed in terms of a variational problem on the classical Freidlin-Wentzell functional. As shown in an example, the rate functional can be not strictly convex.
Small noise asymptotic of the Gallavotti-Cohen functional for diffusion processes / Bertini, L; Di Gesu, G. - In: ALEA. - ISSN 1980-0436. - 12:2(2015), pp. 743-763.
Titolo: | Small noise asymptotic of the Gallavotti-Cohen functional for diffusion processes | |
Autori: | ||
Data di pubblicazione: | 2015 | |
Rivista: | ||
Citazione: | Small noise asymptotic of the Gallavotti-Cohen functional for diffusion processes / Bertini, L; Di Gesu, G. - In: ALEA. - ISSN 1980-0436. - 12:2(2015), pp. 743-763. | |
Handle: | http://hdl.handle.net/11573/1463736 | |
Appartiene alla tipologia: | 01a Articolo in rivista |
File allegati a questo prodotto
File | Note | Tipologia | Licenza | |
---|---|---|---|---|
Bertini_Small-noise_.2015.pdf | Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione) | Tutti i diritti riservati (All rights reserved) | Administrator Richiedi una copia |