For the analysis of multivariate categorical longitudinal data, we propose an extension of the dynamic logit model. The resulting model is based oil a marginal parameterization of the conditional distribution of each vector of response variables given the covariates, the lagged response variables. and a set of subject-specific parameters for the unobserved heterogeneity. The latter ones are assumed to follow a first-order Markov chain. For the maximum likelihood estimation of the model parameters, we outline an EM algorithm. The data analysis approach based on the Proposed model is illustrated by a simulation study and in application to a dataset. which derives front the Panel Study on Income Dynamics and concerns fertility and female participation to the labor market.

A Multivariate Extension of the Dynamic Logit Model for Longitudinal Data Based on a Latent Markov Heterogeneity Structure / Francesco, Bartolucci; Farcomeni, Alessio. - In: JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION. - ISSN 0162-1459. - 104:486(2009), pp. 816-831. [10.1198/jasa.2009.0107]

A Multivariate Extension of the Dynamic Logit Model for Longitudinal Data Based on a Latent Markov Heterogeneity Structure

FARCOMENI, Alessio
2009

Abstract

For the analysis of multivariate categorical longitudinal data, we propose an extension of the dynamic logit model. The resulting model is based oil a marginal parameterization of the conditional distribution of each vector of response variables given the covariates, the lagged response variables. and a set of subject-specific parameters for the unobserved heterogeneity. The latter ones are assumed to follow a first-order Markov chain. For the maximum likelihood estimation of the model parameters, we outline an EM algorithm. The data analysis approach based on the Proposed model is illustrated by a simulation study and in application to a dataset. which derives front the Panel Study on Income Dynamics and concerns fertility and female participation to the labor market.
2009
em algorithm; hidden markov chains; marginal link function; marginal link functions; panel data; state dependence; state dependence.
01 Pubblicazione su rivista::01a Articolo in rivista
A Multivariate Extension of the Dynamic Logit Model for Longitudinal Data Based on a Latent Markov Heterogeneity Structure / Francesco, Bartolucci; Farcomeni, Alessio. - In: JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION. - ISSN 0162-1459. - 104:486(2009), pp. 816-831. [10.1198/jasa.2009.0107]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/146279
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 95
  • ???jsp.display-item.citation.isi??? 92
social impact