The potential of machine learning algorithms in the assessment of market risks has not been completely investigated in the literature, such as in the forecasting Value-at-Risk (VaR). In this paper we introduce the Dynamic Quantile Regression Forest, a model combining Quantile Regression Forests with a dynamic VaR. The model is dynamic as the quantile prediction of the previous random forest becomes part of the training set used to train the next random forest. Thus, it is possible to estimate the response variable conditional distribution by accounting for the evolution of the quantile over time among other covariates
Dynamic Quantile Regression Forest / Andreani, Mila; Petrella, Lea. - (2020), pp. 1054-1058. ((Intervento presentato al convegno 50th Scientific Meeting of the Italian Statistical Society tenutosi a Pisa.
Titolo: | Dynamic Quantile Regression Forest | |
Autori: | ||
Data di pubblicazione: | 2020 | |
Citazione: | Dynamic Quantile Regression Forest / Andreani, Mila; Petrella, Lea. - (2020), pp. 1054-1058. ((Intervento presentato al convegno 50th Scientific Meeting of the Italian Statistical Society tenutosi a Pisa. | |
Handle: | http://hdl.handle.net/11573/1462700 | |
ISBN: | 9788891910776 | |
Appartiene alla tipologia: | 04b Atto di convegno in volume |
File allegati a questo prodotto
File | Note | Tipologia | Licenza | |
---|---|---|---|---|
Andreani_Dynamic-SIS_2020.pdf | Versione editoriale (versione pubblicata con il layout dell'editore) | Tutti i diritti riservati (All rights reserved) | Open Access Visualizza/Apri |