The potential of machine learning algorithms in the assessment of market risks has not been completely investigated in the literature, such as in the forecasting Value-at-Risk (VaR). In this paper we introduce the Dynamic Quantile Regression Forest, a model combining Quantile Regression Forests with a dynamic VaR. The model is dynamic as the quantile prediction of the previous random forest becomes part of the training set used to train the next random forest. Thus, it is possible to estimate the response variable conditional distribution by accounting for the evolution of the quantile over time among other covariates

Dynamic Quantile Regression Forest / Andreani, Mila; Petrella, Lea. - (2020), pp. 1054-1058. (Intervento presentato al convegno 50th Scientific Meeting of the Italian Statistical Society tenutosi a Pisa).

Dynamic Quantile Regression Forest

Andreani Mila;Petrella Lea
2020

Abstract

The potential of machine learning algorithms in the assessment of market risks has not been completely investigated in the literature, such as in the forecasting Value-at-Risk (VaR). In this paper we introduce the Dynamic Quantile Regression Forest, a model combining Quantile Regression Forests with a dynamic VaR. The model is dynamic as the quantile prediction of the previous random forest becomes part of the training set used to train the next random forest. Thus, it is possible to estimate the response variable conditional distribution by accounting for the evolution of the quantile over time among other covariates
2020
50th Scientific Meeting of the Italian Statistical Society
Value-at-Risk; Random Forest; Quantile Regression
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Dynamic Quantile Regression Forest / Andreani, Mila; Petrella, Lea. - (2020), pp. 1054-1058. (Intervento presentato al convegno 50th Scientific Meeting of the Italian Statistical Society tenutosi a Pisa).
File allegati a questo prodotto
File Dimensione Formato  
Andreani_Dynamic-SIS_2020.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 385.33 kB
Formato Adobe PDF
385.33 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1462700
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact