In this paper we apply the Graphical LASSO (GLASSO) procedure to estimate the network of twenty-four commodities divided in energy, agricultural and metal sector. We follow a risk management perspective. We use GARCH and Markov-Switching GARCH classes of models with different specifications for the error terms, and we select those that best estimate Value-at-Risk for each commodity. We achieve GLASSO estimation exploring the precision matrix of the multivariate Gaussian distribution obtained from a Gaussian Copula, with marginals given by the residuals of the models, selected via backtesting procedure. The analysis of interdependences in the resulting network is carried out by using the eigenvector centrality metric.
GLASSO Estimation of Commodity Risks / Foroni, Beatrice; Mazza, Saverio; Morelli, Giacomo; Petrella, Lea. - (2020), pp. 957-962. (Intervento presentato al convegno 50th Scientific Meeting of the Italian Statistical Society tenutosi a Pisa).
GLASSO Estimation of Commodity Risks
Foroni Beatrice;Mazza Saverio;Morelli Giacomo;Petrella Lea
2020
Abstract
In this paper we apply the Graphical LASSO (GLASSO) procedure to estimate the network of twenty-four commodities divided in energy, agricultural and metal sector. We follow a risk management perspective. We use GARCH and Markov-Switching GARCH classes of models with different specifications for the error terms, and we select those that best estimate Value-at-Risk for each commodity. We achieve GLASSO estimation exploring the precision matrix of the multivariate Gaussian distribution obtained from a Gaussian Copula, with marginals given by the residuals of the models, selected via backtesting procedure. The analysis of interdependences in the resulting network is carried out by using the eigenvector centrality metric.File | Dimensione | Formato | |
---|---|---|---|
Petrella_Glasso-SIS_2020.pdf
accesso aperto
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
422.28 kB
Formato
Adobe PDF
|
422.28 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.