We establish Weiss’ and Monneau’s type quasi-monotonicity formulas for quadratic energies having matrix of coefficients in a Sobolev space with summability exponent larger than the space dimension and provide an application to the corresponding free boundary analysis for the related classical obstacle problems.
Quasi-Monotonicity Formulas for Classical Obstacle Problems with Sobolev Coefficients and Applications / Focardi, M.; Geraci, F.; Spadaro, E.. - In: JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS. - ISSN 0022-3239. - 184:1(2020), pp. 125-138. [10.1007/s10957-018-1398-y]
Quasi-Monotonicity Formulas for Classical Obstacle Problems with Sobolev Coefficients and Applications
Spadaro E.
2020
Abstract
We establish Weiss’ and Monneau’s type quasi-monotonicity formulas for quadratic energies having matrix of coefficients in a Sobolev space with summability exponent larger than the space dimension and provide an application to the corresponding free boundary analysis for the related classical obstacle problems.File allegati a questo prodotto
File | Dimensione | Formato | |
---|---|---|---|
Focardi_Quasi-monotonicity-formulas_2020.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
471.49 kB
Formato
Adobe PDF
|
471.49 kB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.