Low-enthalpy geothermal systems are widely spread around the world. Their exploitation for geothermal energy requires an accurate knowledge of the system. Detailed hydrogeochemical characterization is of pivotal importance since geothermal systems are often associated to the occurrence of toxic gases and elements which may contaminate any connected water resources. In this study we demonstrate how increased knowledge of a low-enthalpy geothermal system (Cimino-Vico, Central Italy) can be acquired from the analysis and interpretation of major chemistry and 87Sr/86Sr of local spring waters and groundwaters. With a model-based approach, we assess the main processes governing the major ion composition and arsenic (As) mobility in the system. The occurrence of high concentration of arsenic in the groundwater of the study area is a severe problem for the inhabitants that use the resource for domestic purposes. The system's hydrogeology consists of a shallow highly permeable aquifer, composed of alkaline-potassic volcanic rocks and characterized by fresh waters, a semi-confining layer at the base of the fresh water aquifer, and a deeper thermal aquifer in Mesozoic carbonates and Triassic evaporites. Upwelling of hot waters (up to 63 °C) to the shallow aquifer is related to the presence of faults and fractures in the semi-confining layer. The major chemistry of the deep thermal waters was found to be controlled by dedolomitization, while the fresh waters chemistry is governed by the interaction with the volcanic rocks and the mixing with the upwelling CO2-rich thermal waters. The outcomes of geochemical modeling are consistent with a conceptual model positing that arsenic bound to iron-(hydr)oxides becomes mobilized in the shallow, volcanic aquifer when thermal waters ascend into such shallow aquifer, where they promote the desorption of arsenic in favor of bicarbonate.

Model-based interpretation of hydrogeochemistry and arsenic mobility in a low-enthalpy hydrothermal system / Battistel, M.; Jessen, S.; Rolle, M.; Barbieri, M.. - In: JOURNAL OF GEOCHEMICAL EXPLORATION. - ISSN 0375-6742. - 214:(2020). [10.1016/j.gexplo.2020.106534]

Model-based interpretation of hydrogeochemistry and arsenic mobility in a low-enthalpy hydrothermal system

Battistel M.
Methodology
;
Barbieri M.
Conceptualization
2020

Abstract

Low-enthalpy geothermal systems are widely spread around the world. Their exploitation for geothermal energy requires an accurate knowledge of the system. Detailed hydrogeochemical characterization is of pivotal importance since geothermal systems are often associated to the occurrence of toxic gases and elements which may contaminate any connected water resources. In this study we demonstrate how increased knowledge of a low-enthalpy geothermal system (Cimino-Vico, Central Italy) can be acquired from the analysis and interpretation of major chemistry and 87Sr/86Sr of local spring waters and groundwaters. With a model-based approach, we assess the main processes governing the major ion composition and arsenic (As) mobility in the system. The occurrence of high concentration of arsenic in the groundwater of the study area is a severe problem for the inhabitants that use the resource for domestic purposes. The system's hydrogeology consists of a shallow highly permeable aquifer, composed of alkaline-potassic volcanic rocks and characterized by fresh waters, a semi-confining layer at the base of the fresh water aquifer, and a deeper thermal aquifer in Mesozoic carbonates and Triassic evaporites. Upwelling of hot waters (up to 63 °C) to the shallow aquifer is related to the presence of faults and fractures in the semi-confining layer. The major chemistry of the deep thermal waters was found to be controlled by dedolomitization, while the fresh waters chemistry is governed by the interaction with the volcanic rocks and the mixing with the upwelling CO2-rich thermal waters. The outcomes of geochemical modeling are consistent with a conceptual model positing that arsenic bound to iron-(hydr)oxides becomes mobilized in the shallow, volcanic aquifer when thermal waters ascend into such shallow aquifer, where they promote the desorption of arsenic in favor of bicarbonate.
2020
dedolomitization; geochemical modeling; geogenic arsenic; low-enthalpy hydrothermal system; Strontium Isotopes
01 Pubblicazione su rivista::01a Articolo in rivista
Model-based interpretation of hydrogeochemistry and arsenic mobility in a low-enthalpy hydrothermal system / Battistel, M.; Jessen, S.; Rolle, M.; Barbieri, M.. - In: JOURNAL OF GEOCHEMICAL EXPLORATION. - ISSN 0375-6742. - 214:(2020). [10.1016/j.gexplo.2020.106534]
File allegati a questo prodotto
File Dimensione Formato  
Battistel_Model-based-interpretation_2020.pdf

solo gestori archivio

Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.9 MB
Formato Adobe PDF
1.9 MB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1461350
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
social impact