For each partition p̲ of an integer N≥ 2 , consisting of r parts, an integrable hierarchy of Lax type Hamiltonian PDE has been constructed recently by some of us. In the present paper we show that any tau-function of the p̲-reduced r-component KP hierarchy produces a solution of this integrable hierarchy. Along the way we provide an algorithm for the explicit construction of the generators of the corresponding classical W-algebra W(glN,p̲), and write down explicit formulas for evolution of these generators along the commuting Hamiltonian flows.

p̲ -reduced Multicomponent KP Hierarchy and Classical W -algebras W(glN,p̲) / Carpentier, S.; De Sole, A.; Kac, V. G.; Valeri, D.; van de Leur, J.. - In: COMMUNICATIONS IN MATHEMATICAL PHYSICS. - ISSN 0010-3616. - 380:2(2020), pp. 655-722. [10.1007/s00220-020-03817-x]

p̲ -reduced Multicomponent KP Hierarchy and Classical W -algebras W(glN,p̲)

De Sole A.;Valeri D.;
2020

Abstract

For each partition p̲ of an integer N≥ 2 , consisting of r parts, an integrable hierarchy of Lax type Hamiltonian PDE has been constructed recently by some of us. In the present paper we show that any tau-function of the p̲-reduced r-component KP hierarchy produces a solution of this integrable hierarchy. Along the way we provide an algorithm for the explicit construction of the generators of the corresponding classical W-algebra W(glN,p̲), and write down explicit formulas for evolution of these generators along the commuting Hamiltonian flows.
2020
KP hierarchy; recursion operators; Bi-Hamiltonian structure
01 Pubblicazione su rivista::01a Articolo in rivista
p̲ -reduced Multicomponent KP Hierarchy and Classical W -algebras W(glN,p̲) / Carpentier, S.; De Sole, A.; Kac, V. G.; Valeri, D.; van de Leur, J.. - In: COMMUNICATIONS IN MATHEMATICAL PHYSICS. - ISSN 0010-3616. - 380:2(2020), pp. 655-722. [10.1007/s00220-020-03817-x]
File allegati a questo prodotto
File Dimensione Formato  
Carpentier_postprint_p-Reduced_2020.pdf

accesso aperto

Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Creative commons
Dimensione 650.39 kB
Formato Adobe PDF
650.39 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1460514
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact