We translate the construction of the chiral operad by Beilinson and Drinfeld to the purely algebraic language of vertex algebras. Consequently, the general construction of a cohomology complex associated to a linear operad produces the vertex algebra cohomology complex. Likewise, the associated graded of the chiral operad leads to the classical operad, which produces a Poisson vertex algebra cohomology complex. The latter is closely related to the variational Poisson cohomology studied by two of the authors.

An operadic approach to vertex algebra and Poisson vertex algebra cohomology / Bakalov, B.; De Sole, A.; Heluani, R.; Kac, V. G.. - In: JAPANESE JOURNAL OF MATHEMATICS. NEW SERIES. - ISSN 0289-2316. - 14:2(2019), pp. 249-342. [10.1007/s11537-019-1825-3]

An operadic approach to vertex algebra and Poisson vertex algebra cohomology

De Sole A.;
2019

Abstract

We translate the construction of the chiral operad by Beilinson and Drinfeld to the purely algebraic language of vertex algebras. Consequently, the general construction of a cohomology complex associated to a linear operad produces the vertex algebra cohomology complex. Likewise, the associated graded of the chiral operad leads to the classical operad, which produces a Poisson vertex algebra cohomology complex. The latter is closely related to the variational Poisson cohomology studied by two of the authors.
2019
chiral and classical operads; superoperads; variational Poisson cohomology; vertex algebra and PVA coho-mologies
01 Pubblicazione su rivista::01a Articolo in rivista
An operadic approach to vertex algebra and Poisson vertex algebra cohomology / Bakalov, B.; De Sole, A.; Heluani, R.; Kac, V. G.. - In: JAPANESE JOURNAL OF MATHEMATICS. NEW SERIES. - ISSN 0289-2316. - 14:2(2019), pp. 249-342. [10.1007/s11537-019-1825-3]
File allegati a questo prodotto
File Dimensione Formato  
Bakalov_An-operadic-approach_2019.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.04 MB
Formato Adobe PDF
1.04 MB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1460502
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 7
social impact