We investigate positivity sets of nonnegative supersolutions of the fully nonlinear elliptic equations F(x, u,Du,D2u) = 0 in Ω, where Ω is an open subset of RN, and the validity of the strong maximum principle for F(x, u,Du,D2u) = f in Ω, with f ∈ C(Ω) being nonpositive. We obtain geometric characterizations of positivity sets {x ∈ Ω : u(x) > 0} of nonnegative supersolutions u and establish the strong maximum principle under some geometric assumption on the set {x ∈ Ω : f(x) = 0}.
Positivity sets of supersolutions of degenerate elliptic equations and the strong maximum principle / Birindelli, Isabella; Galise, Giulio; Ishii, Hitoshi. - In: TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY. - ISSN 0002-9947. - (2020). [10.1090/tran/8226]
Titolo: | Positivity sets of supersolutions of degenerate elliptic equations and the strong maximum principle | |
Autori: | ||
Data di pubblicazione: | 2020 | |
Rivista: | ||
Citazione: | Positivity sets of supersolutions of degenerate elliptic equations and the strong maximum principle / Birindelli, Isabella; Galise, Giulio; Ishii, Hitoshi. - In: TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY. - ISSN 0002-9947. - (2020). [10.1090/tran/8226] | |
Handle: | http://hdl.handle.net/11573/1459872 | |
Appartiene alla tipologia: | 01a Articolo in rivista |
File allegati a questo prodotto
File | Note | Tipologia | Licenza | |
---|---|---|---|---|
Birindelli_Positivity-sets_2020.pdf | Versione editoriale (versione pubblicata con il layout dell'editore) | ![]() | Administrator Richiedi una copia |