An explicit solution formula for the matrix modified KdV equation is presented, which comprises the solutions given in [ S. Carillo, M. Lo Schiavo, and C. Schiebold. Matrix solitons solutions of the modified Korteweg-de Vries equation. In: Nonlinear Dynamics of Structures, Systems and Devices, edited by W. Lacarbonara, B. Balachandran, J. Ma, J. Tenreiro Machado, G. Stepan. (Springer, Cham, 2020), pp. 75–83]. In fact, the solutions therein are part of a subclass studied in detail by the authorsin a forthcoming publication. Here several solutions beyond this subclass are constructed and discussed with respect to qualitative properties.
Construction of soliton solutions of the matrix modified Korteweg-de Vries equation / Carillo, Sandra; Schiebold, Cornelia. - (2022), pp. 481-491. - NODYCON CONFERENCE PROCEEDINGS SERIES. [10.1007/978-3-030-81170-9_42].
Construction of soliton solutions of the matrix modified Korteweg-de Vries equation
Sandra Carillo
Primo
;
2022
Abstract
An explicit solution formula for the matrix modified KdV equation is presented, which comprises the solutions given in [ S. Carillo, M. Lo Schiavo, and C. Schiebold. Matrix solitons solutions of the modified Korteweg-de Vries equation. In: Nonlinear Dynamics of Structures, Systems and Devices, edited by W. Lacarbonara, B. Balachandran, J. Ma, J. Tenreiro Machado, G. Stepan. (Springer, Cham, 2020), pp. 75–83]. In fact, the solutions therein are part of a subclass studied in detail by the authorsin a forthcoming publication. Here several solutions beyond this subclass are constructed and discussed with respect to qualitative properties.File | Dimensione | Formato | |
---|---|---|---|
Carillo_preprint_Constructionsoliton_2020.pdf
solo gestori archivio
Tipologia:
Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
2.93 MB
Formato
Adobe PDF
|
2.93 MB | Adobe PDF | Contatta l'autore |
Carillo_Constructionsoliton_2020.pdf
accesso aperto
Note: versione pronta per la pubblicazione sulla Rivista, caricata su Arxiv.org
Tipologia:
Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza:
Creative commons
Dimensione
2.99 MB
Formato
Adobe PDF
|
2.99 MB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.