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Abstract. An explicit solution formula for the matrix modified KdV
equation is presented, which comprises the solutions given in [7]. In fact,
the solutions in [7] are part of a subclass studied in detail by the authors
in a forthcoming publication. Here several solutions beyond this subclass
are constructed and discussed with respect to qualitative properties.
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1 Introduction

The present article is a sequel to [7], where a general approach to the solu-
tion theory of the matrix MKdV is outlined and certain solutions are explicitly
constructed. Actually these solutions are part of a family for which a complete
classification will be given in the forthcoming article [8].

Here the focus is on solutions beyond the setting of [7,8]. In a somewhat
experimental spirit, we will examine ways to weaken the assumptions in [8], and
initialize the study of some novel solution classes. The emphasis does not lie on
completeness, but on a qualitative study of phenomena, discussed mainly for the
first interesting cases.

The result to start from is a general solution formula presented in Theorem
1, building on work in [4,5]. Solution formulas of this kind have been stud-
ied for a quite a while, see [3,15,18,20] and the references therein. Here the
use of Bäcklund techniques should also be mentioned [2,13,16,17]. Closely re-
lated formulas for scalar equations are known to generate very large solution
classes, roughly speaking the solutions accessible by the standard inverse scat-
tering method [1]. As the situation for matrix equations is much less transparent,
the case studies made here are also meant as a step towards better understand-
ing the range of our methods. Finally we mention some alternative approaches
to matrix solutions in [10,12,14,19].
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2 An explicit solution class of the d × d-matrix
Korteweg-de Vries equation depending on matrix
parameters and N -solitons

We start with stating an explicit solution class for the modified Korteweg-de
Vries equation with values in the d× d-matrices,

Vt = Vxxx + 3{V 2, Vx}, (1)

depending on matrix parameters.

Theorem 1. For N ∈ N, let k1, . . . , kN be complex numbers such that ki+kj 6= 0
for all i, j, and let B1, . . . , BN be arbitrary d× d-matrices.

Define the Nd×Nd-matrix function L = L(x, t) as block matrix L = (Lij)
N
i,j=1

with the d× d-blocks

Lij =
`i

ki + kj
Bj,

where `i = `i(x, t) = exp(kix+ k3i t).
Then

V =
(
B1 B2 . . . BN

) (
INd + L2

)−1 `1Id
...

`NId


is a solution of the matrix modified KdV equation (1) with values in the d × d-
matrices on every domain Ω on which det(INd + L2) 6= 0.

The proof of Theorem 1, which is based on results in [4,5], is provided in [8].
Here we focus on applications and discuss some interesting examples.

Remark 1.

a) In [5] it is shown that the solution class for the matrix KdV equation which
corresponds to the class in Theorem 1 comprises the N -soliton solutions as
derived by the inverse scattering method in [12].

b) In contrast to (1), the non-commutative mKdV in the form

Vt = Vxxx + 3
(
V V TVx + VxV

TV
)
= 0,

(as for example derived from reduction of the non-commutative AKNS sys-
tem) admits also non-square matrix interpretation. We refer to [20] for a
fairly complete asymptotics of 2-solitons in the vector case.

3 Explicit solutions

Motivated by [7], the subclass of solutions arising from choosing k1, . . . , kN ∈ R
and B1 = . . . = BN =: B (up to a common real multiple) where both B
and its Jordan canonical form are real, is discussed thoroughly in [8], the main
result being a complete classification of this subclass up to a possible (common)
change of coordinates. It should be stressed that all solutions in [7] belong to
this subclass.

In the present section a variety of solutions beyond this case are presented.
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3.1 The matrix parameter B does not have a real Jordan form

A prototypical example for a real matrix without real Jordan form in the case
d = 2 are rotations. Consider

B =

(
1√
2

1√
2

− 1√
2

1√
2

)
,

the rotation with the angle π
4 , and let N = 1.

The corresponding solution according to Theorem 1 is

V = B
(
I2 +

( 1

2k
`B
)2)−1

`I2

= 2k gB
(
I2 +

(
gB
)2)−1

,

where g = `/(2k). Since B2 is the clockwise rotation by π/2, i.e. B2 =

(
0 1
−1 0

)
,

this is very easily computed explicitly, giving

V =
√

2k g

(
1 1
−1 1

)(
1 g2

−g2 1

)−1
=
√

2k
g

1 + g4

(
1 1
−1 1

)(
1 −g2
g2 1

)
=
√

2k
g

1 + g4

(
1 + g2 1− g2

−(1− g2) 1 + g2

)
Note that this solution is regular and moves, without changing shape, with ve-
locity constant −k2.
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Fig. 1. Snapshot of the solution in Subsection 3.1 for k = 1 at t = 0.



4 Sandra Carillo and Cornelia Schiebold

3.2 Unequal matrix parameters

Next we consider the case N = 2 with matrix parameters B1, B2 such that
B1 6= cB2 (for all c ∈ R). In this case we get from Theorem 1

V =
(
B1 B2

) (
I2d +M2

)−1(`1Id
`2Id

)
with M =

( 1
2k1

`1B1
1

k1+k2
`1B2

1
k1+k2

`2B1
1

2k2
`2B2

)
.

Let us first focus on the case that

B1B2 = 0 = B2B1.

Using this assumption, it is straightforward to verify that(
B1 B2

)
M =

(
B1 B2

)
R, (2)

M2 = MR, (3)

where

R =

( 1
2k1

`1B1 0

0 1
2k2

`2B2

)
.

From (3) we get M3R = MM2R = M(MR)R = M2R2. Thus, M2(I2d +R2) =
(I2d +M2)MR, showing (I2d +M2)−1M2 = MR(I2d +R2)−1, and hence

(I2d +M2)−1 = I2d − (I2d +M2)−1M2 = I2d −MR(I2d +R2)−1.

Together with (2), this implies(
B1 B2

) (
I2d +M2

)−1
=
(
B1 B2

) (
I2d −MR(I2d +R2)−1

)
=
(
B1 B2

) (
I2d −R2(I2d +R2)−1

)
=
(
B1 B2

) (
I2d +R2

)−1
As a result,

V =
(
B1 B2

)
(
Id + 1

(2k1)2
`21B

2
1

)−1
0

0
(
Id + 1

(2k1)2
`21B

2
1

)−1
(`1Id`2Id

)

=
∑
j=1,2

`jBj

(
Id +

1

(2kj)2
`2jB

2
j

)−1
=:

∑
j=1,2

Vj .

Observe that Vj is precisely the solution one obtains from the input data N = 1
with parameters kj , Bj in Theorem 1. In this sense, Vj can be interpreted as a
matrix 1-soliton. In the case B1B2 = 0 = B2B1, the solution V therefore is a
linear superposition of the two matrix 1-solitons.
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Fig. 2. The solution in Example 1a) depicted for −10 ≤ x ≤ 10 and −5 ≤ t ≤ 5 with
plot range between −

√
2 and

√
2.

Fig. 3. The solution in Example 1b) depicted for −10 ≤ x ≤ 10 and −5 ≤ t ≤ 5 with
plot range between −

√
2 and

√
2.
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Example 1. In Figures 2 and 3, the solution is depicted in the case d = 2, for
k1 = 1, k2 =

√
2, and the matrix parameters are

a) Figure 2 B1 =

(
1 0
0 0

)
, B2 =

(
0 0
0 1

)
,

b) Figure 3 B1 =

(
1 1
1 1

)
, B2 =

(
1 −1
−1 1

)
.

Of course there is a huge variety of solutions not covered by the cases above.
We conclude this subsection with one additional example.

Example 2. In Figure 4 the solution is depicted in the case d = 2, for k1 = 1,
k2 =

√
2, and with the matrix parameters

B1 =

(
1 0
0 1

)
, B2 =

(
0 1
1 0

)
.

Fig. 4. The solution in Example 2 depicted for −10 ≤ x ≤ 10 and −5 ≤ t ≤ 5 with
plot range between −

√
2 and

√
2.

For comparison, we also depict
the scalar 2-soliton4. The frame is
the same as in Figure 4.

4 As generated in the case d = 1 with the input data N = 2, k1 = 1, k2 =
√

2, and
b1 = b2 = 1 in Theorem 1.



Construction of solitons of the matrix modified KdV 7

Remark 2. In [11], a Bäcklund chart of KdV-type equations is introduced, link-
ing in particular the KdV with its singularity equation (For a generalization of
this link to the operator level we refer to [9], see also [6]). It is then indicating
how this can be used to generate explicit solutions. It would be interesting to
compare the solution in Example 2, see Figure 4, with the (scalar) interacting
soliton in [11], see Figure 3.

3.3 Complex parameters: A breather solution

Finally we would like to mention that also complex parameters can lead to real
solutions. This is well-known in the case of the scalar modified KdV equation
where the input data k, k, b, b results in a breather5, a solution consisting of a
bound state of a soliton and an antisoliton [21]. The same holds true in the case
of the matrix modified KdV equation as the following argument shows.

Starting from Theorem 1 with N = 2 and the parameters chosen to as k1 = k,
k2 = k (such that `1 = `, `2 = `) and B1 = B, B2 = B, our solution reads

V =
(
B B

) (
I2d +M2

)−1(`Id
`Id

)
with M =

(
1
2k `B

1
k+k

`B
1

k+k
`B 1

2k
`B

)
.

Introducing D =

(
0 Id
Id 0

)
, such that

(
B B

)
=
(
B B

)
D and

(
`Id
`Id

)
=

(
`Id
`Id

)
and

DMD =

(
0 Id
Id 0

)( 1
2k `B

1
k+k

`B
1

k+k
`B 1

2k
`B

)(
0 Id
Id 0

)

=

(
1
2k `B

1
k+k

`B
1

k+k
`B 1

2k
`B

)
.

Observe that D−1 = D. Hence, since D(I2d + M2)−1D = (I2d + DM2D)−1 =
(I2d + (DMD)2)−1, we find

V =
(
B B

)(
I2d +

(
1
2k `B

1
k+k

`B
1

k+k
`B 1

2k
`B

)2)−1(
`Id
`Id

)
= V ,

showing that the solution V is real.

Example 3. For illustration, we add two random examples. In both examples
k = 1 + i. For the corresponding scalar breather this implies velocity = 2, and
hence the plots are drawn for (x, x+ 2t) giving a stationary picture. The matrix
parameter is

5 Here k denotes the complex conjugate of k.
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Figure 6 B =

(
i −2

1 + i 2− i

)
,

Figure 7 B =

(
i −2i

3i− 1 −1

)
.

Fig. 5. The solution in Example 3a) is depicted for −5 ≤ x ≤ 5 and 0 ≤ t ≤ 2 with
plot range between −3.5 and 3.5.
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