We study distinguished subalgebras and automorphisms of boundary quotients arising from algebraic dynamical systems (G, P, θ). Our work includes a complete solution to the problem of extending Bogolubov automorphisms from the Cuntz algebra in 2 ≤ p < ∞ generators to the p-adic ring C∗algebra. For the case where P is abelian and C∗(G) is a maximal abelian subalgebra, we establish a picture for the automorphisms of the boundary quotient that fix C∗(G) pointwise. This allows us to show that they form a maximal abelian subgroup of the entire automorphism group. The picture also leads to the surprising outcome that, for integral dynamics, every automorphism that fixes one of the natural Cuntz subalgebras pointwise is necessarily a gauge automorphism. Many of the automorphisms we consider are shown to be outer.

The inner structure of boundary quotients of right LCM semigroups / Aiello, V.; Conti, R.; Rossi, S.; Stammeier, N.. - In: INDIANA UNIVERSITY MATHEMATICS JOURNAL. - ISSN 0022-2518. - 69:5(2020), pp. 1627-1661. [10.1512/iumj.2020.69.8006]

The inner structure of boundary quotients of right LCM semigroups

Aiello V.;Conti R.;
2020

Abstract

We study distinguished subalgebras and automorphisms of boundary quotients arising from algebraic dynamical systems (G, P, θ). Our work includes a complete solution to the problem of extending Bogolubov automorphisms from the Cuntz algebra in 2 ≤ p < ∞ generators to the p-adic ring C∗algebra. For the case where P is abelian and C∗(G) is a maximal abelian subalgebra, we establish a picture for the automorphisms of the boundary quotient that fix C∗(G) pointwise. This allows us to show that they form a maximal abelian subgroup of the entire automorphism group. The picture also leads to the surprising outcome that, for integral dynamics, every automorphism that fixes one of the natural Cuntz subalgebras pointwise is necessarily a gauge automorphism. Many of the automorphisms we consider are shown to be outer.
2020
C*-algebra, automorphism, right LCM semigroup, boundary quotient
01 Pubblicazione su rivista::01a Articolo in rivista
The inner structure of boundary quotients of right LCM semigroups / Aiello, V.; Conti, R.; Rossi, S.; Stammeier, N.. - In: INDIANA UNIVERSITY MATHEMATICS JOURNAL. - ISSN 0022-2518. - 69:5(2020), pp. 1627-1661. [10.1512/iumj.2020.69.8006]
File allegati a questo prodotto
File Dimensione Formato  
Aiello_Inner_2020.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 447.85 kB
Formato Adobe PDF
447.85 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1458399
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 4
social impact