In this paper, we investigate the numerical approximation of Hamilton-Jacobi equations with the Caputo time-fractional derivative. We introduce an explicit in time discretization of the Caputo derivative and a finite difference scheme for the approximation of the Hamiltonian. We show that the approximation scheme so obtained is stable under an appropriate condition on the discretization parameters and converges to the unique viscosity solution of the Hamilton-Jacobi equation.
Approximation of Hamilton-Jacobi equations with Caputo time-fractional derivative / Camilli, Fabio; Duisembay, Serik. - In: MINIMAX THEORY AND ITS APPLICATIONS. - ISSN 2199-1413. - 5:2(2020), pp. 199-220.
Approximation of Hamilton-Jacobi equations with Caputo time-fractional derivative
Fabio Camilli;
2020
Abstract
In this paper, we investigate the numerical approximation of Hamilton-Jacobi equations with the Caputo time-fractional derivative. We introduce an explicit in time discretization of the Caputo derivative and a finite difference scheme for the approximation of the Hamiltonian. We show that the approximation scheme so obtained is stable under an appropriate condition on the discretization parameters and converges to the unique viscosity solution of the Hamilton-Jacobi equation.File | Dimensione | Formato | |
---|---|---|---|
Camilli_Approximation_2020.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
401.33 kB
Formato
Adobe PDF
|
401.33 kB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.