In this paper, we investigate the numerical approximation of Hamilton-Jacobi equations with the Caputo time-fractional derivative. We introduce an explicit in time discretization of the Caputo derivative and a finite difference scheme for the approximation of the Hamiltonian. We show that the approximation scheme so obtained is stable under an appropriate condition on the discretization parameters and converges to the unique viscosity solution of the Hamilton-Jacobi equation.

Approximation of Hamilton-Jacobi equations with Caputo time-fractional derivative / Camilli, Fabio; Duisembay, Serik. - In: MINIMAX THEORY AND ITS APPLICATIONS. - ISSN 2199-1413. - 5:2(2020), pp. 199-220.

Approximation of Hamilton-Jacobi equations with Caputo time-fractional derivative

Fabio Camilli;
2020

Abstract

In this paper, we investigate the numerical approximation of Hamilton-Jacobi equations with the Caputo time-fractional derivative. We introduce an explicit in time discretization of the Caputo derivative and a finite difference scheme for the approximation of the Hamiltonian. We show that the approximation scheme so obtained is stable under an appropriate condition on the discretization parameters and converges to the unique viscosity solution of the Hamilton-Jacobi equation.
2020
Fractional Hamilton-Jacobi equation, Caputo time derivative, finite difference, convergence
01 Pubblicazione su rivista::01a Articolo in rivista
Approximation of Hamilton-Jacobi equations with Caputo time-fractional derivative / Camilli, Fabio; Duisembay, Serik. - In: MINIMAX THEORY AND ITS APPLICATIONS. - ISSN 2199-1413. - 5:2(2020), pp. 199-220.
File allegati a questo prodotto
File Dimensione Formato  
Camilli_Approximation_2020.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 401.33 kB
Formato Adobe PDF
401.33 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1458372
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact