A 3D-2D dimension reduction for a nonhomogeneous constrained energy is performed in the realm of Γ-convergence, and two-scale convergence for slender domains, providing an integral representation for the limit functional. Applications to supremal functionals are also given.
A note on dimension reduction for unbounded integrals with periodic microstructure via the unfolding method for slender domains / Zappale, Elvira. - In: EVOLUTION EQUATIONS AND CONTROL THEORY. - ISSN 2163-2480. - 6:(2017), pp. 299-318. [10.3934/eect.2017016]
A note on dimension reduction for unbounded integrals with periodic microstructure via the unfolding method for slender domains
ZAPPALE, Elvira
2017
Abstract
A 3D-2D dimension reduction for a nonhomogeneous constrained energy is performed in the realm of Γ-convergence, and two-scale convergence for slender domains, providing an integral representation for the limit functional. Applications to supremal functionals are also given.File allegati a questo prodotto
File | Dimensione | Formato | |
---|---|---|---|
Zappale_Note_2017.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
425.47 kB
Formato
Adobe PDF
|
425.47 kB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.