High-rate GNSS observations are usually studied in relation to earthquake analysis and structural monitoring. Most of the previous research on short-term dynamic deformations has been limited to natural earthquakes with magnitudes exceeding 5 and amplitudes equal to several dozen centimetres. High-frequency position monitoring via GNSS stations is particularly important in mining areas due to the need to monitor mining damages. On 29 January 2019 (12:53:44 UTC), an M3.7 event occurred in the area of Legnica-Głogów Copper District. This study presents GPS-derived displacement analysis in relation to seismological data. Station position time series were determined by double differencing and Precise Point Positioning. The peak ground displacement was 2–14 mm. The correlation coefficients between GPS and seismological displacement time series reached 0.92. A statistical evaluation of GPS displacement time series was carried out to detect an event using only GPS observations.

High-rate GPS positioning for tracing anthropogenic seismic activity. The 29 January 2019 mining tremor in Legnica- Głogów Copper District, Poland / Kudlacik, I.; Kaplon, J.; Lizurek, G.; Crespi, M.; Kurpinski, G.. - In: MEASUREMENT. - ISSN 0263-2241. - 168:(2020). [10.1016/j.measurement.2020.108396]

High-rate GPS positioning for tracing anthropogenic seismic activity. The 29 January 2019 mining tremor in Legnica- Głogów Copper District, Poland

Crespi M.
Penultimo
Membro del Collaboration Group
;
2020

Abstract

High-rate GNSS observations are usually studied in relation to earthquake analysis and structural monitoring. Most of the previous research on short-term dynamic deformations has been limited to natural earthquakes with magnitudes exceeding 5 and amplitudes equal to several dozen centimetres. High-frequency position monitoring via GNSS stations is particularly important in mining areas due to the need to monitor mining damages. On 29 January 2019 (12:53:44 UTC), an M3.7 event occurred in the area of Legnica-Głogów Copper District. This study presents GPS-derived displacement analysis in relation to seismological data. Station position time series were determined by double differencing and Precise Point Positioning. The peak ground displacement was 2–14 mm. The correlation coefficients between GPS and seismological displacement time series reached 0.92. A statistical evaluation of GPS displacement time series was carried out to detect an event using only GPS observations.
2020
GNSS-seismology; high-rate GNSS; mining tremor
01 Pubblicazione su rivista::01a Articolo in rivista
High-rate GPS positioning for tracing anthropogenic seismic activity. The 29 January 2019 mining tremor in Legnica- Głogów Copper District, Poland / Kudlacik, I.; Kaplon, J.; Lizurek, G.; Crespi, M.; Kurpinski, G.. - In: MEASUREMENT. - ISSN 0263-2241. - 168:(2020). [10.1016/j.measurement.2020.108396]
File allegati a questo prodotto
File Dimensione Formato  
Kudłacik_High-rate-GPS_2021.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.95 MB
Formato Adobe PDF
1.95 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1457990
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 18
social impact