We derive some symmetrization and anti-symmetrization properties of parabolic equations. First, we deduce from a result by Jones (1983) a quantitative estimate of how far the level sets of solutions are from being spherical. Next, using this property, we derive a criterion providing solutions whose level sets do not converge to spheres for a class of equations including linear equations and Fisher-KPP reaction-diffusion equations.

Symmetrization and anti-symmetrization in parabolic equations / Rossi, L.. - In: PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY. - ISSN 0002-9939. - 145:6(2017), pp. 2527-2537. [10.1090/proc/13391]

Symmetrization and anti-symmetrization in parabolic equations

Rossi L.
2017

Abstract

We derive some symmetrization and anti-symmetrization properties of parabolic equations. First, we deduce from a result by Jones (1983) a quantitative estimate of how far the level sets of solutions are from being spherical. Next, using this property, we derive a criterion providing solutions whose level sets do not converge to spheres for a class of equations including linear equations and Fisher-KPP reaction-diffusion equations.
2017
parabolic equations; symmetrization; counter-example
01 Pubblicazione su rivista::01a Articolo in rivista
Symmetrization and anti-symmetrization in parabolic equations / Rossi, L.. - In: PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY. - ISSN 0002-9939. - 145:6(2017), pp. 2527-2537. [10.1090/proc/13391]
File allegati a questo prodotto
File Dimensione Formato  
Rossi_preprint_Symmetrization_2017.pdf

accesso aperto

Tipologia: Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza: Creative commons
Dimensione 320.56 kB
Formato Adobe PDF
320.56 kB Adobe PDF
Rossi_Symmetrization_2017.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 200.53 kB
Formato Adobe PDF
200.53 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1456943
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact