We derive some symmetrization and anti-symmetrization properties of parabolic equations. First, we deduce from a result by Jones (1983) a quantitative estimate of how far the level sets of solutions are from being spherical. Next, using this property, we derive a criterion providing solutions whose level sets do not converge to spheres for a class of equations including linear equations and Fisher-KPP reaction-diffusion equations.
Symmetrization and anti-symmetrization in parabolic equations / Rossi, L.. - In: PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY. - ISSN 0002-9939. - 145:6(2017), pp. 2527-2537. [10.1090/proc/13391]
Titolo: | Symmetrization and anti-symmetrization in parabolic equations | |
Autori: | ROSSI, LUCA (Corresponding author) | |
Data di pubblicazione: | 2017 | |
Rivista: | ||
Citazione: | Symmetrization and anti-symmetrization in parabolic equations / Rossi, L.. - In: PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY. - ISSN 0002-9939. - 145:6(2017), pp. 2527-2537. [10.1090/proc/13391] | |
Handle: | http://hdl.handle.net/11573/1456943 | |
Appartiene alla tipologia: | 01a Articolo in rivista |
File allegati a questo prodotto
File | Note | Tipologia | Licenza | |
---|---|---|---|---|
Rossi_preprint_Symmetrization_2017.pdf | Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review) | ![]() | Open Access Visualizza/Apri | |
Rossi_Symmetrization_2017.pdf | Versione editoriale (versione pubblicata con il layout dell'editore) | Tutti i diritti riservati (All rights reserved) | Administrator Richiedi una copia |