We derive some symmetrization and anti-symmetrization properties of parabolic equations. First, we deduce from a result by Jones (1983) a quantitative estimate of how far the level sets of solutions are from being spherical. Next, using this property, we derive a criterion providing solutions whose level sets do not converge to spheres for a class of equations including linear equations and Fisher-KPP reaction-diffusion equations.
Symmetrization and anti-symmetrization in parabolic equations / Rossi, L.. - In: PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY. - ISSN 0002-9939. - 145:6(2017), pp. 2527-2537. [10.1090/proc/13391]
Symmetrization and anti-symmetrization in parabolic equations
Rossi L.
2017
Abstract
We derive some symmetrization and anti-symmetrization properties of parabolic equations. First, we deduce from a result by Jones (1983) a quantitative estimate of how far the level sets of solutions are from being spherical. Next, using this property, we derive a criterion providing solutions whose level sets do not converge to spheres for a class of equations including linear equations and Fisher-KPP reaction-diffusion equations.File | Dimensione | Formato | |
---|---|---|---|
Rossi_preprint_Symmetrization_2017.pdf
accesso aperto
Tipologia:
Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza:
Creative commons
Dimensione
320.56 kB
Formato
Adobe PDF
|
320.56 kB | Adobe PDF | |
Rossi_Symmetrization_2017.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
200.53 kB
Formato
Adobe PDF
|
200.53 kB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.