We study the Γ-limit of Ambrosio-Tortorelli-type functionals D ϵ (u, v) {D-{arepsilon}(u,v)}, whose dependence on the symmetrised gradient e (u) {e(u)} is different in u {mathbb{A}u} and in e (u)- u {e(u)-mathbb{A}u}, for a â., {mathbb{C}}-elliptic symmetric operator {mathbb{A}}, in terms of the prefactor depending on the phase-field variable v. The limit energy depends both on the opening and on the surface of the crack, and is intermediate between the Griffith brittle fracture energy and the one considered by Focardi and Iurlano [Asymptotic analysis of Ambrosio-Tortorelli energies in linearized elasticity, SIAM J. Math. Anal. 46 2014, 4, 2936-2955]. In particular, we prove that G(S)BD functions with bounded " {mathbb{A}}-variation are (S)BD.

Phase-field approximation for a class of cohesive fracture energies with an activation threshold / Chambolle, A.; Crismale, V.. - In: ADVANCES IN CALCULUS OF VARIATIONS. - ISSN 1864-8258. - (2020). [10.1515/acv-2019-0018]

Phase-field approximation for a class of cohesive fracture energies with an activation threshold

Crismale V.
2020

Abstract

We study the Γ-limit of Ambrosio-Tortorelli-type functionals D ϵ (u, v) {D-{arepsilon}(u,v)}, whose dependence on the symmetrised gradient e (u) {e(u)} is different in u {mathbb{A}u} and in e (u)- u {e(u)-mathbb{A}u}, for a â., {mathbb{C}}-elliptic symmetric operator {mathbb{A}}, in terms of the prefactor depending on the phase-field variable v. The limit energy depends both on the opening and on the surface of the crack, and is intermediate between the Griffith brittle fracture energy and the one considered by Focardi and Iurlano [Asymptotic analysis of Ambrosio-Tortorelli energies in linearized elasticity, SIAM J. Math. Anal. 46 2014, 4, 2936-2955]. In particular, we prove that G(S)BD functions with bounded " {mathbb{A}}-variation are (S)BD.
2020
Free discontinuity problems
01 Pubblicazione su rivista::01a Articolo in rivista
Phase-field approximation for a class of cohesive fracture energies with an activation threshold / Chambolle, A.; Crismale, V.. - In: ADVANCES IN CALCULUS OF VARIATIONS. - ISSN 1864-8258. - (2020). [10.1515/acv-2019-0018]
File allegati a questo prodotto
File Dimensione Formato  
Chambolle_Phase-field-approximation_2020.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.05 MB
Formato Adobe PDF
1.05 MB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1454742
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 8
social impact