In this paper we study, in dimension two, the stability of the solutions of some nonlinear elliptic equations with Neumann boundary conditions, under perturbations of the domains in the Hausdorff complementary topology. More precisely, for every bounded open subset Ω of ℝ2, we consider the problem: {-diva(x,∇uΩ)+b (x,uΩ)=0 in Ω, a (x,∇uΩ)·ν=0 on ∂Ω, where a:ℝ2×ℝ2→ℝ2 and b:ℝ2×ℝ→ℝ are two Carathéodory functions which satisfy the standard monotonicity and growth conditions of order p, with 1<p≤2. Let Ωn be a uniformly bounded sequence of open sets in ℝ2, whose complements Ωnc have a uniformly bounded number of connected components. We prove that, if Ωnc→Ωc in the Hausdorff metric and Ωn → Ω , then uΩn→u Ω and ∇uΩn →∇uΩ strongly in Lp. The proof is obtained by showing the Mosco convergence of the Sobolev spaces W1,p(Ωn) to the Sobolev space W1,p(Ω). © 2003 Éditions scientifiques et médicales Elsevier SAS. All rights reserved.

A stability result for nonlinear Neumann problems under boundary variations / Gianni Dal, Maso; François, Ebobisse; Ponsiglione, Marcello. - In: JOURNAL DE MATHÉMATIQUES PURES ET APPLIQUÉES. - ISSN 0021-7824. - STAMPA. - 82:5(2003), pp. 503-532. [10.1016/s0021-7824(03)00014-x]

A stability result for nonlinear Neumann problems under boundary variations

PONSIGLIONE, Marcello
2003

Abstract

In this paper we study, in dimension two, the stability of the solutions of some nonlinear elliptic equations with Neumann boundary conditions, under perturbations of the domains in the Hausdorff complementary topology. More precisely, for every bounded open subset Ω of ℝ2, we consider the problem: {-diva(x,∇uΩ)+b (x,uΩ)=0 in Ω, a (x,∇uΩ)·ν=0 on ∂Ω, where a:ℝ2×ℝ2→ℝ2 and b:ℝ2×ℝ→ℝ are two Carathéodory functions which satisfy the standard monotonicity and growth conditions of order p, with 1<p≤2. Let Ωn be a uniformly bounded sequence of open sets in ℝ2, whose complements Ωnc have a uniformly bounded number of connected components. We prove that, if Ωnc→Ωc in the Hausdorff metric and Ωn → Ω , then uΩn→u Ω and ∇uΩn →∇uΩ strongly in Lp. The proof is obtained by showing the Mosco convergence of the Sobolev spaces W1,p(Ωn) to the Sobolev space W1,p(Ω). © 2003 Éditions scientifiques et médicales Elsevier SAS. All rights reserved.
2003
boundary value problems; capacity; hausdorff metric; monotone operators; mosco convergence; nonlinear elliptic equations
01 Pubblicazione su rivista::01a Articolo in rivista
A stability result for nonlinear Neumann problems under boundary variations / Gianni Dal, Maso; François, Ebobisse; Ponsiglione, Marcello. - In: JOURNAL DE MATHÉMATIQUES PURES ET APPLIQUÉES. - ISSN 0021-7824. - STAMPA. - 82:5(2003), pp. 503-532. [10.1016/s0021-7824(03)00014-x]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/145412
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 26
  • ???jsp.display-item.citation.isi??? 22
social impact