We study the linear response of a spin current to a small electric field in a two-dimensional crystalline insulator with nonconserved spin. We adopt the spin current operator proposed in J. Shi et al. [Phys. Rev. Lett. 96, 076604 (2006)PRLTAO0031-900710.1103/PhysRevLett.96.076604], which satisfies a continuity equation and fits the Onsager relations. We use the time-independent perturbation theory to present a formula for the spin Hall conductivity, which consists of a "Chern-type"term, reminiscent of the Kubo formula obtained for the quantum Hall systems, and a correction term that accounts for the nonconservation of spin. We illustrate our findings on the Bernevig-Hughes-Zhang model and the Kane-Mele model for time-reversal-symmetric topological insulators and show that the correction term scales quadratically with the amplitude of the spin-conservation-breaking terms. In both models, the spin Hall conductivity deviates from the quantized value when spin is not conserved.
Spin Hall conductivity in insulators with nonconserved spin / Monaco, D.; Ulcakar, L.. - In: PHYSICAL REVIEW. B. - ISSN 2469-9950. - 102:12(2020), p. 125138.
Titolo: | Spin Hall conductivity in insulators with nonconserved spin | |
Autori: | ||
Data di pubblicazione: | 2020 | |
Rivista: | ||
Citazione: | Spin Hall conductivity in insulators with nonconserved spin / Monaco, D.; Ulcakar, L.. - In: PHYSICAL REVIEW. B. - ISSN 2469-9950. - 102:12(2020), p. 125138. | |
Handle: | http://hdl.handle.net/11573/1453991 | |
Appartiene alla tipologia: | 01a Articolo in rivista |
File allegati a questo prodotto
File | Note | Tipologia | Licenza | |
---|---|---|---|---|
Monaco_Spin-hall_2020.pdf | Versione editoriale (versione pubblicata con il layout dell'editore) | Tutti i diritti riservati (All rights reserved) | Administrator Richiedi una copia | |
Monaco_postprint_Spin-hall_2020.pdf | Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione) | ![]() | Open Access Visualizza/Apri |