Embedding spaces are one of the mainstream approaches when dealing with structured data. Granular Computing, in the last decade, emerged as a powerful paradigm for the automatic synthesis of embedding spaces that, at the same time, yield an interpretable model on the top of meaningful entities known as information granules. Usually, in these contexts, one aims at finding the smallest set of information granules in order to boost the model interpretability while keeping satisfactory performances. In this paper, we add a third objective, namely the structural complexity of the resulting model and we exploit three biology-related case studies related to metabolic networks and protein networks in order to investigate the link between classification performances, embedding space dimensionality and structural complexity of the resulting model.

On the optimization of embedding spaces via information granulation for pattern recognition / Martino, Alessio; FRATTALE MASCIOLI, Fabio Massimo; Rizzi, Antonello. - (2020), pp. 1-8. (Intervento presentato al convegno 2020 International Joint Conference on Neural Networks, IJCNN 2020 tenutosi a Glasgow (UK)) [10.1109/IJCNN48605.2020.9206830].

On the optimization of embedding spaces via information granulation for pattern recognition

Alessio Martino;Fabio Massimo Frattale Mascioli;Antonello Rizzi
2020

Abstract

Embedding spaces are one of the mainstream approaches when dealing with structured data. Granular Computing, in the last decade, emerged as a powerful paradigm for the automatic synthesis of embedding spaces that, at the same time, yield an interpretable model on the top of meaningful entities known as information granules. Usually, in these contexts, one aims at finding the smallest set of information granules in order to boost the model interpretability while keeping satisfactory performances. In this paper, we add a third objective, namely the structural complexity of the resulting model and we exploit three biology-related case studies related to metabolic networks and protein networks in order to investigate the link between classification performances, embedding space dimensionality and structural complexity of the resulting model.
2020
2020 International Joint Conference on Neural Networks, IJCNN 2020
computational biology; embedding spaces; granular computing; support vector machine; systems biology; topological data analysis
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
On the optimization of embedding spaces via information granulation for pattern recognition / Martino, Alessio; FRATTALE MASCIOLI, Fabio Massimo; Rizzi, Antonello. - (2020), pp. 1-8. (Intervento presentato al convegno 2020 International Joint Conference on Neural Networks, IJCNN 2020 tenutosi a Glasgow (UK)) [10.1109/IJCNN48605.2020.9206830].
File allegati a questo prodotto
File Dimensione Formato  
Martino_Copertina-Indice_Optimization_2020.pdf

accesso aperto

Tipologia: Altro materiale allegato
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 607.48 kB
Formato Adobe PDF
607.48 kB Adobe PDF
Martino_Optimization_2020.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 880.85 kB
Formato Adobe PDF
880.85 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1453641
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 11
social impact