This paper develops a Mixed Hidden Markov Model for joint estimation of multiple quantiles in a multivariate linear regression for longitudinal data. This method accounts for association among multiple responses and study how the relationship between dependent and explanatory variables may vary across different quantile levels of the conditional distribution of the multivariate response variable. Unobserved heterogeneity sources and serial dependence are jointly modeled through the introduction of individual-specific, time-constant random coefficients and time-varying parameters that evolve over time with a Markovian structure, respectively. Estimation is carried out via a suitable EM algorithm without parametric assumptions on the random effects distribution. We assess the empirical behaviour of the proposed methodology through the analysis of the Millennium Cohort Study data.

Multivariate Mixed Hidden Markov Model for joint estimation of multiple quantiles / Merlo, Luca; Petrella, Lea; Tzavidis, Nikos. - (2020). (Intervento presentato al convegno 50th Scientific Meeting of the Italian Statistical Society tenutosi a Pisa; Italy).

Multivariate Mixed Hidden Markov Model for joint estimation of multiple quantiles

Merlo Luca;Petrella Lea;
2020

Abstract

This paper develops a Mixed Hidden Markov Model for joint estimation of multiple quantiles in a multivariate linear regression for longitudinal data. This method accounts for association among multiple responses and study how the relationship between dependent and explanatory variables may vary across different quantile levels of the conditional distribution of the multivariate response variable. Unobserved heterogeneity sources and serial dependence are jointly modeled through the introduction of individual-specific, time-constant random coefficients and time-varying parameters that evolve over time with a Markovian structure, respectively. Estimation is carried out via a suitable EM algorithm without parametric assumptions on the random effects distribution. We assess the empirical behaviour of the proposed methodology through the analysis of the Millennium Cohort Study data.
2020
50th Scientific Meeting of the Italian Statistical Society
Longitudinal data; Mixed Hidden Markov Model; Multivariate Asymmetric Laplace Distribution; Quantile Regression; Random Effects Mode
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Multivariate Mixed Hidden Markov Model for joint estimation of multiple quantiles / Merlo, Luca; Petrella, Lea; Tzavidis, Nikos. - (2020). (Intervento presentato al convegno 50th Scientific Meeting of the Italian Statistical Society tenutosi a Pisa; Italy).
File allegati a questo prodotto
File Dimensione Formato  
Merlo_Quantile-Mixed-Mode-SIS_2020.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 351.93 kB
Formato Adobe PDF
351.93 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1453471
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact