The analysis of singular solutions in optimal control problems is addressed. The case of systems with two inputs is investigated characterising all the possible combination of singular arcs and constant boundary values. It is described the extension to a two input system of a previously proposed procedure for computing the control along the singular arcs in a state feedback form for one input dynamics. The procedure makes use of the possibility of computation in an analytical form of the costate as a function of the state. The example of a SIRC epidemic model is used to verify the effectiveness of the result.

Singular solution in optimal control for two input dynamics: The case of a SIRC epidemic model / Di Giamberardino, P.; Iacoviello, D.. - (2020), pp. 103-108. ((Intervento presentato al convegno 28th Mediterranean Conference on Control and Automation, MED 2020 tenutosi a Electr Network.

Singular solution in optimal control for two input dynamics: The case of a SIRC epidemic model

Di Giamberardino P.
;
Iacoviello D.
2020

Abstract

The analysis of singular solutions in optimal control problems is addressed. The case of systems with two inputs is investigated characterising all the possible combination of singular arcs and constant boundary values. It is described the extension to a two input system of a previously proposed procedure for computing the control along the singular arcs in a state feedback form for one input dynamics. The procedure makes use of the possibility of computation in an analytical form of the costate as a function of the state. The example of a SIRC epidemic model is used to verify the effectiveness of the result.
978-1-7281-5742-9
File allegati a questo prodotto
File Dimensione Formato  
DiGiamberardino_Singular-solution_2020.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1 MB
Formato Adobe PDF
1 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11573/1452866
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact