This paper investigates the use of Reinforcement Learning for the robust design of low-thrust interplanetary trajectories in presence of severe disturbances, modeled alternatively as Gaussian additive process noise, observation noise, control actuation errors on thrust magnitude and direction, and possibly multiple missed thrust events. The optimal control problem is recast as a time-discrete Markov Decision Process to comply with the standard formulation of reinforcement learning. An open-source implementation of the state-of-the-art algorithm Proximal Policy Optimization is adopted to carry out the training process of a deep neural network, used to map the spacecraft (observed) states to the optimal control policy. The resulting Guidance and Control Network provides both a robust nominal trajectory and the associated closed-loop guidance law. Numerical results are presented for a typical Earth-Mars mission. First, in order to validate the proposed approach, the solution found in a (deterministic) unperturbed scenario is compared with the optimal one provided by an indirect technique. Then, the robustness and optimality of the obtained closed-loop guidance laws is assessed by means of Monte Carlo campaigns performed in the considered uncertain scenarios. These preliminary results open up new horizons for the use of reinforcement learning in the robust design of interplanetary missions.

Reinforcement learning for low-thrust trajectory design of interplanetary missions / Zavoli, Alessandro; Federici, Lorenzo. - 175:(2021), pp. 151-170. (Intervento presentato al convegno 2020 AAS/AIAA Astrodynamics Specialist Conference tenutosi a Virtual Event).

Reinforcement learning for low-thrust trajectory design of interplanetary missions

Alessandro Zavoli
Primo
;
Lorenzo Federici
Secondo
2021

Abstract

This paper investigates the use of Reinforcement Learning for the robust design of low-thrust interplanetary trajectories in presence of severe disturbances, modeled alternatively as Gaussian additive process noise, observation noise, control actuation errors on thrust magnitude and direction, and possibly multiple missed thrust events. The optimal control problem is recast as a time-discrete Markov Decision Process to comply with the standard formulation of reinforcement learning. An open-source implementation of the state-of-the-art algorithm Proximal Policy Optimization is adopted to carry out the training process of a deep neural network, used to map the spacecraft (observed) states to the optimal control policy. The resulting Guidance and Control Network provides both a robust nominal trajectory and the associated closed-loop guidance law. Numerical results are presented for a typical Earth-Mars mission. First, in order to validate the proposed approach, the solution found in a (deterministic) unperturbed scenario is compared with the optimal one provided by an indirect technique. Then, the robustness and optimality of the obtained closed-loop guidance laws is assessed by means of Monte Carlo campaigns performed in the considered uncertain scenarios. These preliminary results open up new horizons for the use of reinforcement learning in the robust design of interplanetary missions.
2021
2020 AAS/AIAA Astrodynamics Specialist Conference
deep learning; reinforcement learning; space trajectory; optimization; interplanetary
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Reinforcement learning for low-thrust trajectory design of interplanetary missions / Zavoli, Alessandro; Federici, Lorenzo. - 175:(2021), pp. 151-170. (Intervento presentato al convegno 2020 AAS/AIAA Astrodynamics Specialist Conference tenutosi a Virtual Event).
File allegati a questo prodotto
File Dimensione Formato  
Zavoli_Reinforcement_2021.pdf

solo gestori archivio

Note: http://www.univelt.com/FAQ.html#CONTACT
Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 2.11 MB
Formato Adobe PDF
2.11 MB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1452839
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact