This paper presents the main characteristics of the evolutionary optimization code named EOS, Evolutionary Optimization at Sapienza, and its successful application to challenging, real-world space trajectory optimization problems. EOS is a global optimization algorithm for constrained and unconstrained problems of real-valued variables. It implements a number of improvements to the well-known Differential Evolution (DE) algorithm, namely, a self-adaptation of the control parameters, an epidemic mechanism, a clustering technique, an arepsilon-constrained method to deal with nonlinear constraints, and a synchronous island-model to handle multiple populations in parallel. The results reported prove that EOS is capable of achieving increased performance compared to state-of-the-art single-population self-adaptive DE algorithms when applied to high-dimensional or highly-constrained space trajectory optimization problems.
EOS: A Parallel, Self-Adaptive, Multi-Population Evolutionary Algorithm for Constrained Global Optimization / Federici, L.; Benedikter, B.; Zavoli, A.. - (2020), pp. 1-10. ((Intervento presentato al convegno 2020 IEEE Congress on Evolutionary Computation, CEC 2020 tenutosi a gbr [10.1109/CEC48606.2020.9185800].
Scheda prodotto non validato
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo
Titolo: | EOS: A Parallel, Self-Adaptive, Multi-Population Evolutionary Algorithm for Constrained Global Optimization | |
Autori: | ||
Data di pubblicazione: | 2020 | |
Citazione: | EOS: A Parallel, Self-Adaptive, Multi-Population Evolutionary Algorithm for Constrained Global Optimization / Federici, L.; Benedikter, B.; Zavoli, A.. - (2020), pp. 1-10. ((Intervento presentato al convegno 2020 IEEE Congress on Evolutionary Computation, CEC 2020 tenutosi a gbr [10.1109/CEC48606.2020.9185800]. | |
Handle: | http://hdl.handle.net/11573/1452827 | |
ISBN: | 978-1-7281-6929-3 | |
Appartiene alla tipologia: | 04b Atto di convegno in volume |